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Mid 1950’s: Robert Vaught Answers Dana Scott

Theorem. There is a model of true arithmetic that is
isomorphic to a proper initial segment of itself.

This result was later included in the joint 1962-paper of
Vaught and Morley on ”homogeneous universal” models in
which the class saturated and special structures were first
investigated (prompted by earlier developments by Fräıssé,
and by Jónsson).

Vaught’s proof used special models.

A model A is special if A can be written as the union of a
chain 〈Aα : α < |A|〉 such that each Aα is α+-saturated.
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Outline of Vaught’s proof

Let N := (ω,+, ·) and let M� N.
Note that N (end M.

Let (M∗, ω∗) � (M, ω), where (M∗, ω∗) is a special model.

M∗ ∼= ω∗ since M∗ and ω∗ are elementarily equivalent,
special models of the same cardinality.

With the help of the MacDowell-Specker theorem, and the
Löwenheim-Skolem theorem, the above proof shows that
every consistent extension of PA has a countable model that
is isomorphic to an elementary proper initial segment of itself.
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1973: Harvey Friedman’s
Countable models of set theories

Theorem. Every countable nonstandard model of PA is
isomorphic to a proper initial segment of itself.

Theorem. The following are equivalent for countable
nonstandard models M and N of PA:

(1) SSy(M) = SSy(N ), and ThΣ1(M) ⊆ ThΣ1(N ).

(2)M is isomorphic to a proper intial segment of N .
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1973, 1977: Alex Wilkie’s Contributions

Theorem. There are continuum-many initial segments of
every countable nonstandard model of M of PA that are
isomorphic to M.

Theorem. The following are equivalent for countable
nonstandard models M and N of PA:

(1) ThΠ2(M) ⊆ ThΠ2(N ).

(2) There are arbitrarily high initial segment of N that are
isomorphic to M.
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1978: Hamid Lessan’s Refinement of Friedman’s Theorem

Theorem. A countable model M of ΠPA
2 is isomorphic to a

proper initial segment of itself iff M is 1-tall and 1-extendible.

1-tall means that the set of Σ1-definable elements of M is
not cofinal in M.

1-extendible means that there is an end extension M∗ of M
that satisfies I∆0 and ThΣ1(M) = ThΣ1(M∗).
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1978: John Schlipf’s Reformulation of Vaught’s Theorem

With the introduction of the key concepts of recursive
saturation and resplendence (in the 1970’s), Vaught’s result
was reclothed by John Schlipf as:

Theorem. Every resplendent model of PA is isomorphic to
a proper elementary initial segment of itself .

Recall: countable recursively saturated models are resplendent.

The fact that special models are resplendent was first noted
by Chang and Moschovakis (1968).
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1978: Craig Smoryński’s Lectures

Smorynski’s influential lectures and expositions systematized
Friedman-style embedding theorems around the key concept
of (partial) recursive saturation.

Key idea: in a nonstandard model M of PA, the Σn-types
that are realized are precisely the ones coded in the standard
system of M.

The above is the direct consequence of the existence of
definable Σn-satisfaction predicates for each n.
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1979: Leonard Lipshitz Confirms Stanley Tennenbaum

Theorem. A countable nonstandard model of PA is
Diophantine correct iff it can be embedded into arbitrarily low
nonstandard initial segments of itself.

Lipshitz’s proof used the Friedman embedding theorem and
the MRDP theorem.

Later (1987) Bonnie Gold refined Lipshitz’s aforementioned
result by showing:
Theorem. IfM and N are models of PA with M⊆end N ,
then:
N is Diophantine correct relative to M iff
for every a ∈ N\M there is an embedding j : N → N such
that j(N) < a and j(m) = m for all m ∈ M.
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1980: Petr Hájek and Pavel Pudlák’s Variant

Theorem. Suppose I is a cut closed under exponentiation
that is shared by two nonstandard models M and N of PA
such that:
M and N have the same I -standard system, and
ThΣ1(M, i)i∈I ⊆ ThΣ1(N , i)i∈I .
Then there is an embedding j of M onto a proper initial
segment of N such that j(c) = c for all c ∈ I .
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1981: Jeff Paris’ Variation on a Theme by Robert Solovay

Paris noted that an unpublished construction of Robert
Solovay can be used to show:

Theorem. Every countable recursively saturated model of
I∆0 + BΣ1 is isomorphic to a proper initial segment of itself.

Ali Enayat University of Gothenburg Self-Embeddings: from Vaught to Tanaka



1981: Jeff Paris’ Variation on a Theme by Robert Solovay

Paris noted that an unpublished construction of Robert
Solovay can be used to show:

Theorem. Every countable recursively saturated model of
I∆0 + BΣ1 is isomorphic to a proper initial segment of itself.

Ali Enayat University of Gothenburg Self-Embeddings: from Vaught to Tanaka



1981: Jeff Paris’ Variation on a Theme by Robert Solovay

Paris noted that an unpublished construction of Robert
Solovay can be used to show:

Theorem. Every countable recursively saturated model of
I∆0 + BΣ1 is isomorphic to a proper initial segment of itself.

Ali Enayat University of Gothenburg Self-Embeddings: from Vaught to Tanaka



1983: A Contribution from Žarko Mijajlović

Theorem. Suppose M is a countable model of PA and
a /∈ ∆M1 , then there is a self-embedding of M onto a
submodel N such that a /∈ N.

(Marker and Wilkie) In the above, N can be arranged to be
an initial segment of M if there is no b > a with b ∈ ∆M1 .
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1985: Costas Dimitracopoulos’ Refinement

Theorem. Every countable nonstandard model of I∆0 + BΣ2

is isomorphic to a proper initial segment of itself.

We now outline the proof. First, we need a key general result
(Ehrenfuecht-Jensen, 1976)

A theory is rich if it has a recursive sequence of independent
formulae.

Recursively saturated models of rich theories have canonical
standard systems.

Theorem. The isomorphism type of a countable recursively
saturated model M of a rich theory is determined by
Th(M) and SSy(M).
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Proof-outline of Ehrenfuecht-Jensen’s Theorem

(1) Recursively saturated models are homogeneous.

Here M is said to be homogeneous if for any pair
(a1, · · ·, an), and (b1, · · ·, bn) of finite sequences from M, if
(M, a1, · · ·, an) ≡ (M∗, b1, · · ·, bn), then for every c ∈ M
there is d ∈ M such that

(M, a1, · · ·, an, c) ≡ (M, b1, · · ·, bn, d).

(2) Any two countable homogeneous models that satisfy the
same set of types are isomorphic. This is established by a
back-and-forth argument.

(3) The set of types that are coded in a recursively saturated
model of a rich theory are precisely those types that are coded
in SSy(M).
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Back to Dimitracopoulos’ Proof (1)

View the arithmetical operations + and as ternary relations. If
M is a nonstandard model of PA, then for any nonstandard
c ∈ M, and let

Mc := ({0, 1, 2, · · ·, c},+, ·)

One can then show that there is a definable satisfaction
predicate for Mc . This can then be used to show that Mc is
recursively saturated.

Let d be some fixed nonstandard member of M, and for each
c ∈ M, let Th≤d(Mc) be the set of sentences of length at
most d that are true in Mc , as computed in M.
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Back to Dimitracopoulos’ Proof (2)

Using a “pigeon-hole” argument, one can show that there is
some e ∈ M such that M satisfies:
{x ∈ M : Th≤d(Me) = Th≤d(Mx)} is unbounded.

By a 1978-result of Kirby-Paris, M has a Σ2-elementary end
extension M∗.
This shows that there is some e ′ ∈ M∗\M such that
Th≤d(Me) = Th≤d(M∗e′).
By the Ehrenfeucht-Jensen theorem we may conclude that
there is an isomorphism f :M∗e′ →Me . By restricting f to
M, we obtain an embedding of into a proper initial segment
of itself.

Ali Enayat University of Gothenburg Self-Embeddings: from Vaught to Tanaka



Back to Dimitracopoulos’ Proof (2)

Using a “pigeon-hole” argument, one can show that there is
some e ∈ M such that M satisfies:
{x ∈ M : Th≤d(Me) = Th≤d(Mx)} is unbounded.

By a 1978-result of Kirby-Paris, M has a Σ2-elementary end
extension M∗.
This shows that there is some e ′ ∈ M∗\M such that
Th≤d(Me) = Th≤d(M∗e′).
By the Ehrenfeucht-Jensen theorem we may conclude that
there is an isomorphism f :M∗e′ →Me . By restricting f to
M, we obtain an embedding of into a proper initial segment
of itself.

Ali Enayat University of Gothenburg Self-Embeddings: from Vaught to Tanaka



Back to Dimitracopoulos’ Proof (2)

Using a “pigeon-hole” argument, one can show that there is
some e ∈ M such that M satisfies:
{x ∈ M : Th≤d(Me) = Th≤d(Mx)} is unbounded.

By a 1978-result of Kirby-Paris, M has a Σ2-elementary end
extension M∗.

This shows that there is some e ′ ∈ M∗\M such that
Th≤d(Me) = Th≤d(M∗e′).
By the Ehrenfeucht-Jensen theorem we may conclude that
there is an isomorphism f :M∗e′ →Me . By restricting f to
M, we obtain an embedding of into a proper initial segment
of itself.

Ali Enayat University of Gothenburg Self-Embeddings: from Vaught to Tanaka



Back to Dimitracopoulos’ Proof (2)

Using a “pigeon-hole” argument, one can show that there is
some e ∈ M such that M satisfies:
{x ∈ M : Th≤d(Me) = Th≤d(Mx)} is unbounded.

By a 1978-result of Kirby-Paris, M has a Σ2-elementary end
extension M∗.
This shows that there is some e ′ ∈ M∗\M such that
Th≤d(Me) = Th≤d(M∗e′).

By the Ehrenfeucht-Jensen theorem we may conclude that
there is an isomorphism f :M∗e′ →Me . By restricting f to
M, we obtain an embedding of into a proper initial segment
of itself.

Ali Enayat University of Gothenburg Self-Embeddings: from Vaught to Tanaka



Back to Dimitracopoulos’ Proof (2)

Using a “pigeon-hole” argument, one can show that there is
some e ∈ M such that M satisfies:
{x ∈ M : Th≤d(Me) = Th≤d(Mx)} is unbounded.

By a 1978-result of Kirby-Paris, M has a Σ2-elementary end
extension M∗.
This shows that there is some e ′ ∈ M∗\M such that
Th≤d(Me) = Th≤d(M∗e′).
By the Ehrenfeucht-Jensen theorem we may conclude that
there is an isomorphism f :M∗e′ →Me . By restricting f to
M, we obtain an embedding of into a proper initial segment
of itself.

Ali Enayat University of Gothenburg Self-Embeddings: from Vaught to Tanaka



1987: Jean-Pierre Ressayre’s Optimal Result

Theorem. Suppose M is for every countable nonstandard
model M of I Σ1 and for every a ∈M there is an embedding
j of M onto a proper initial segment of itself such that
j(x) = x for all x ≤ a.

Moreover, the above property characterizes countable models
of I Σ1 among countable models of I∆0.
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1988: Work of Costas Dimitracopoulos and Jeffrey Paris

Independently of Ressayre, Dimitracopoulos and Paris showed
that every countable nonstandard model of IΣ1 is isomorphic
to a proper initial segment of itself.

They also generalized Lessan’s aforementioned result by
weakening ΠPA

2 to I∆0 + exp +BΣ1.
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1991: Richard Kaye’s Textbook

Kaye’s text presented a number of refinements of Friedman’s
theorem, including the following, but first a definition:

A partial function f from M to M is a partial M-recursive
function if the graph of f is definable in M by a
parameter-free Σ1-formula.

Theorem. Suppose {a, b} ⊆ M with a < b. The following
statements are equivalent:

(1) There is an initial embedding j :M→M with j(a) = a
and a < j(M) < b.

(2) There is a cut I of M with a < I < b and
Th (M, a) = Th(I , a).

(3) There is a cut I of M with a < I < b and
Th

Σ1
(M, a) = Th

Σ1
(I , a).

(4) f (a) < b for all partial M-recursive functions.
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1997: Kazuyuki Tanaka Ups the Ante

Tanaka extended Ressayre’s aforementioned result to
countable nonstandard models of the fragment WKL0 of
second order arithmetic.

Tanaka’s motivation for his result was the development of
non-standard methods within the confines of the frugal system
WKL0.

A remarkable application of Tanaka’s result appears in the
work of Tanaka and Yamazaki, where it is used to show that
the construction of the Haar measure (over compact groups)
can be implemented within WKL0 via a detour through
nonstandard models.

This is in contrast to the previously known constructions of
the Haar measure whose implementation can only be
accommodated within the stronger fragment ACA0 of second
order arithmetic.
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Tanaka’s Theorem

Theorem. Every countable nonstandard model (M,A) of
WKL0 is isomorphic to a proper initial segment I of itself in
the sense that there is an isomorphism
φ :M→ I such that φ induces an isomorphism
φ̂ : (M,A)→ (I ,A � I ).

In the above:
A � I := {A ∩ I : A ∈ A}, and φ̂ is defined by:
φ̂(m) = φ(m) for m ∈ M and
φ̂(A) = {φ(a) : a ∈ A} for A ∈ A.

Moreover, given any prescribed a ∈ M, there is some I and φ
as above such that φa(m) = m for all m ≤ a.
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Thank You

ευχαριστώ
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