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Modern Versions of Friedman’s Theorem (1)

Unless stated otherwise, in this talk M is a countable model
of IΣ1, and I is a proper initial segment of M.

A partial function f from M to M is a partial M-recursive
function if the graph of f is definable in M by a
parameter-free Σ1-formula.

Theorem. Suppose c ∈ M, and {a, b} ⊆ N with a < b. The
following statements are equivalent:

(1) SSy(M) = SSy(N ), and for every ∆0-formula δ(x , y) we
have:

M |= ∃y δ(c , y) =⇒ N |= ∃y < b δ(a, y).

(2) There is an initial embedding j :M→N with j(c) = a
and a < j(M) < b.
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Modern Versions of Friedman’s Theorem (2)

Theorem. Suppose {a, b} ⊆ M with a < b. The following
statements are equivalent:

(1) There is an initial embedding j :M→M with j(a) = a
and a < j(M) < b.

(2) There is a cut I of M with a < I < b and
Th (M, a) = Th(I , a).

(3) There is a cut I of M with a < I < b and
Th

Σ1
(M, a) = Th

Σ1
(I , a).

(4) f (a) < b for all partial M-recursive functions.
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A Refinement of Hájek-Pudlák’s Theorem (1)

Let P ⊆ M be a set of parameters. A partial function f from
M to M is a P-partial M-recursive function of M if the
graph of f is definable in M by a Σ1-formula with parameters
in P.

Theorem. Suppose I is a cut shared by M and N , and I is
closed under exponentiation.

Assume furthermore that c ∈M, with I < c, and {a, b} ⊆ N
with I < a < b. The following statements are equivalent:

(i) SSyJ(M) = SSyJ(N ), and for every ∆0-formula
δ(x , y , z), and all i ∈ I we have:

M |= ∃y δ(c , y , i) =⇒ N |= ∃y < b δ(a, y , i).

(ii) There is an initial embedding j :M→N such that
j(c) = a,
a < j(M) < b, and
j(c) = c for all c ∈ I .
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A Refinement of Hájek-Pudlák’s Theorem (1)

Let P ⊆ M be a set of parameters. A partial function f from
M to M is a P-partial M-recursive function of M if the
graph of f is definable in M by a Σ1-formula with parameters
in P.

Theorem. Suppose I is a cut shared by M and N , and I is
closed under exponentiation.

Assume furthermore that c ∈M, with I < c, and {a, b} ⊆ N
with I < a < b. The following statements are equivalent:

(i) SSyJ(M) = SSyJ(N ), and for every ∆0-formula
δ(x , y , z), and all i ∈ I we have:

M |= ∃y δ(c , y , i) =⇒ N |= ∃y < b δ(a, y , i).

(ii) There is an initial embedding j :M→N such that
j(c) = a,
a < j(M) < b, and
j(c) = c for all c ∈ I .

Ali Enayat University of Gothenburg Self-Embeddings: Some Recent Results



Refinement of Hájek-Pudlák’s Theorem (2)

Theorem. Suppose {a, b} ⊆ M with I < a < b, where I is a
cut of M that is closed under exponentiation. The following
statements are equivalent:

(1) There is an initial embedding j :M→M with
a < j(M) < b, and I ∪ {a} ⊆ Fix(j).

(2) There is a cut I ∗ of M with a < I ∗ < b and
Th (M, a, i)i∈I = Th(I ∗, a, i)i∈I .

(3) There is a cut I ∗ of M with a < I ∗ < b such that
Th

Σ1
(M, a, i)i∈I = Th

Σ1
(I ∗, a, i)i∈I .

(4) f (a) < b for all I -partial M-recursive functions f
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The Shavrukov-Wilkie Theorem

A (total) function f from M to M is a total M-recursive
function if the graph of f is definable in M by a
parameter-free Σ1-formula.

Theorem. Suppose {a, b} ⊆ N with a < b. The following
statements are equivalent:

(1) SSy(M) = SSy(N ), and for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∀x∃y δ(x , y) =⇒ N |= ∃y < b δ(a, y).

(2) There is some c ∈ M such that for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∃yδ(c , y) =⇒ N |= ∃y < b δ(a, y).

(3) There is an initial embedding j :M→N with
a < j(M) < b.

Ali Enayat University of Gothenburg Self-Embeddings: Some Recent Results



The Shavrukov-Wilkie Theorem

A (total) function f from M to M is a total M-recursive
function if the graph of f is definable in M by a
parameter-free Σ1-formula.

Theorem. Suppose {a, b} ⊆ N with a < b. The following
statements are equivalent:

(1) SSy(M) = SSy(N ), and for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∀x∃y δ(x , y) =⇒ N |= ∃y < b δ(a, y).

(2) There is some c ∈ M such that for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∃yδ(c , y) =⇒ N |= ∃y < b δ(a, y).

(3) There is an initial embedding j :M→N with
a < j(M) < b.

Ali Enayat University of Gothenburg Self-Embeddings: Some Recent Results



The Shavrukov-Wilkie Theorem

A (total) function f from M to M is a total M-recursive
function if the graph of f is definable in M by a
parameter-free Σ1-formula.

Theorem. Suppose {a, b} ⊆ N with a < b. The following
statements are equivalent:

(1) SSy(M) = SSy(N ), and for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∀x∃y δ(x , y) =⇒ N |= ∃y < b δ(a, y).

(2) There is some c ∈ M such that for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∃yδ(c , y) =⇒ N |= ∃y < b δ(a, y).

(3) There is an initial embedding j :M→N with
a < j(M) < b.

Ali Enayat University of Gothenburg Self-Embeddings: Some Recent Results



The Shavrukov-Wilkie Theorem

A (total) function f from M to M is a total M-recursive
function if the graph of f is definable in M by a
parameter-free Σ1-formula.

Theorem. Suppose {a, b} ⊆ N with a < b. The following
statements are equivalent:

(1) SSy(M) = SSy(N ), and for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∀x∃y δ(x , y) =⇒ N |= ∃y < b δ(a, y).

(2) There is some c ∈ M such that for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∃yδ(c , y) =⇒ N |= ∃y < b δ(a, y).

(3) There is an initial embedding j :M→N with
a < j(M) < b.

Ali Enayat University of Gothenburg Self-Embeddings: Some Recent Results



The Shavrukov-Wilkie Theorem

A (total) function f from M to M is a total M-recursive
function if the graph of f is definable in M by a
parameter-free Σ1-formula.

Theorem. Suppose {a, b} ⊆ N with a < b. The following
statements are equivalent:

(1) SSy(M) = SSy(N ), and for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∀x∃y δ(x , y) =⇒ N |= ∃y < b δ(a, y).

(2) There is some c ∈ M such that for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∃yδ(c , y) =⇒ N |= ∃y < b δ(a, y).

(3) There is an initial embedding j :M→N with
a < j(M) < b.

Ali Enayat University of Gothenburg Self-Embeddings: Some Recent Results



The Shavrukov-Wilkie Theorem

A (total) function f from M to M is a total M-recursive
function if the graph of f is definable in M by a
parameter-free Σ1-formula.

Theorem. Suppose {a, b} ⊆ N with a < b. The following
statements are equivalent:

(1) SSy(M) = SSy(N ), and for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∀x∃y δ(x , y) =⇒ N |= ∃y < b δ(a, y).

(2) There is some c ∈ M such that for every parameter-free
∆0-formula δ(x , y) we have:

M |= ∃yδ(c , y) =⇒ N |= ∃y < b δ(a, y).

(3) There is an initial embedding j :M→N with
a < j(M) < b.

Ali Enayat University of Gothenburg Self-Embeddings: Some Recent Results



Corollaries of the Shavrukov-Wilkie Theorem

Corollary. Suppose {a, b} ⊆ M with a < b. The following
statements are equivalent:

(1) There is an initial embedding j :M→M with
a < j(M) < b.

(2) There is a cut I of M with a < I < b and
Th(M) = Th(I ).

(3) f (a) < b for all M-recursive functions f.
.

Corollary. M is isomorphic to arbitrarily high initial segments
of N iff SSy(M) = SSy(N ) and ThΠ2(M) ⊆ ThΠ2(N ).
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Th(M) = Th(I ).

(3) f (a) < b for all M-recursive functions f.
.

Corollary. M is isomorphic to arbitrarily high initial segments
of N iff SSy(M) = SSy(N ) and ThΠ2(M) ⊆ ThΠ2(N ).
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Tanaka’s Theorem (1)

Models of WKL0 are two-sorted structures of the form
(M,A), where
M = (M,+, ·, <, 0, 1) |= IΣ1, and

A is a family of subsets of M such that (M,A) satisfies:

(1) Induction for Σ0
1 formulae;

(2) Comprehension for ∆0
1-formulae; and

(3) Weak König’s Lemma: every infinite subtree of the full
binary tree has an infinite branch.

It is well known that every countable model M of IΣ1 can be
expanded to a model (M,A) |= WKL0. This important result
is due independently to Harrington and Ratajczyk.
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Tanaka’s Theorem (2)

Theorem. (Tanaka) Every countable nonstandard model
(M,A) of WKL0 is isomorphic to a proper initial segment I
of itself in the sense that there is an isomorphism φ :M→ I
such that φ induces an isomorphism φ̂ : (M,A)→ (I ,A � I ).

Moreover, given any prescribed a ∈ M, there is some I and φ
as above such that φ(m) = m for all m ≤ a.

A � I := {A ∩ I : A ∈ A},
φ̂(m) = φ(m) for m ∈ M,
and φ̂(A) = {φ(a) : a ∈ A} for A ∈ A.
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Tanaka’s Theorem (4)

Corollary. Every countable nonstandard model (M,A) of
WKL0 has an extension (M∗,A∗) to a model of WKL0 such
that M∗ properly end extends M, and A = A∗ � M.
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Tanaka’s Theorem (5)

Paris showed that every countable recursively saturated model
of I∆0 + BΣ1 is isomorphic to a proper initial segment of
itself, a result that is described by Paris as being ‘implicit’ in
an (unpublished) paper of Solovay.

This result of Solovay and Paris can be fine-tuned, as shown
by the work of Charalambos Cornaros and Keita Yokoyama
(independently).

Theorem. Suppose N is a countable model of I∆0 + BΣ1

that is recursively saturated, and there are a < b in N such
that for every ∆0-formula δ(x , y) we have:

N |= ∃y δ(a, y) =⇒ N |= ∃y < b δ(a, y).

There is an isomorphism φ : N → I , where I is an initial
segment of N , with
φ(a) = a and a < I < b.
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Tanaka’s Theorem (6)

Stage 1: Given a countable nonstandard model (M,A) of
WKL0, and a prescribed a ∈ M in this stage we use the
‘muscles’ of IΣ1 in the form of the strong Σ1-collection to
locate an element b in M such that f (a) < b for all partial
M-recursive functions f .

Stage 2 Outline: We build an end extension N of M such
that the following conditions hold:
(I) N |= I∆0 + BΣ1;
(II) N is recursively saturated;
(III) f (a) < b for all partial N -recursive functions; and
(IV) SSyM(N ) = A.

Stage 3 Outline: We use the refined Paris-Solovay theorem
to embed N onto a proper initial segment J of M. By
elementary considerations, this will yield a proper cut I of J
with (M,A) ∼= (I ,A � I ).
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Tanaka’s Theorem (7)

Stage 2 of the proof can be summarized into a theorem in its
own right.

Theorem. Let (M,A) be a countable model of WKL0 and
let b ∈ M. Then M has a recursively saturated proper end
extension N satisfying I∆0 + BΣ1 + PRA such that
SSyM(N ) = A, and N is a conservative extension of M
with respect to Π1,≤b-sentences.

Follow Scott’s strategy of showing ”countable Scott sets can
be realized as the standard system of a (recursively saturated)
model of PA”;

(Beklemishev, 1998; refining Clote-Hájek-Paris, 1990)

IΣ1 ` Con(I∆0 + BΣ1 + TrueΠ2).
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A Characterization of WKL0

Theorem. Let (M,A) be a countable model of RCA0. The
following are equivalent:
(1) (M,A) is a model of WKL0.

(2) For every b ∈ M there exists a recursively saturated
proper end extension N of M such that N |= I∆0 + BΣ1,
SSyM(N ) = A, and N is a conservative extension of M
with respect to Π1,≤b−sentences.

(3) For every b ∈ M there is a proper initial segment I of M
such that (M,A) is isomorphic to (I ,A � I ) via an
isomorphism that pointwise fixes M≤b.

Ali Enayat University of Gothenburg Self-Embeddings: Some Recent Results



A Characterization of WKL0

Theorem. Let (M,A) be a countable model of RCA0. The
following are equivalent:
(1) (M,A) is a model of WKL0.

(2) For every b ∈ M there exists a recursively saturated
proper end extension N of M such that N |= I∆0 + BΣ1,
SSyM(N ) = A, and N is a conservative extension of M
with respect to Π1,≤b−sentences.

(3) For every b ∈ M there is a proper initial segment I of M
such that (M,A) is isomorphic to (I ,A � I ) via an
isomorphism that pointwise fixes M≤b.

Ali Enayat University of Gothenburg Self-Embeddings: Some Recent Results



A Characterization of WKL0

Theorem. Let (M,A) be a countable model of RCA0. The
following are equivalent:
(1) (M,A) is a model of WKL0.

(2) For every b ∈ M there exists a recursively saturated
proper end extension N of M such that N |= I∆0 + BΣ1,
SSyM(N ) = A, and N is a conservative extension of M
with respect to Π1,≤b−sentences.

(3) For every b ∈ M there is a proper initial segment I of M
such that (M,A) is isomorphic to (I ,A � I ) via an
isomorphism that pointwise fixes M≤b.

Ali Enayat University of Gothenburg Self-Embeddings: Some Recent Results



A Characterization of WKL0

Theorem. Let (M,A) be a countable model of RCA0. The
following are equivalent:
(1) (M,A) is a model of WKL0.

(2) For every b ∈ M there exists a recursively saturated
proper end extension N of M such that N |= I∆0 + BΣ1,
SSyM(N ) = A, and N is a conservative extension of M
with respect to Π1,≤b−sentences.

(3) For every b ∈ M there is a proper initial segment I of M
such that (M,A) is isomorphic to (I ,A � I ) via an
isomorphism that pointwise fixes M≤b.

Ali Enayat University of Gothenburg Self-Embeddings: Some Recent Results



Controlling Fixed Points (1)

Theorem. (E, 2012). Suppose I is a proper cut of M that is
closed under exponentiation. There is a Σ1-elementary
extension N of M such that SSyI (N ) = SSyI (M) and
Ifix(j) = I for some j ∈ Aut(N ).

Theorem. (E, 2012) Suppose I is proper cut of M. The
following conditions are equivalent.

(1) There is an initial self-embedding j :M→M such that
Ifix(j) = I .

(2) I is closed under exponentiation.
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Controlling Fixed Points (2)

Theorem. (E, 2012) Suppose I is proper initial segment of
M. The following conditions are equivalent.

(1) There is an initial self-embedding j :M→M such that
Fix(j) = I .

(2) I is a strong cut of M, and I ≺Σ1 M.
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Controlling Fixed Points (3)

Theorem. (E, 2012) The following conditions are equivalent.
(1) There is an initial self-embedding j :M→M such that
Fix(j) = K 1(M).
(2) N is a strong cut of M.
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The Germomorphism Group (1)

Suppose I is a proper cut of M. Let GI (M) be the group of
“I -endomorphism of M” whose elements are E -equivalence
classes of isomorphisms between initial segments of M that
properly contain I and which pointwise fix I , where E stands
for “agreement on a cut that properly extends I ”.

Theorem. (E, 2012) There is an embedding of Aut(Q) into
G (M).
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The Germomorphism Group (2)

Key technical device:
Theorem. Let J be a proper cut of M that is closed under
exponentiation. There is an elementary embedding λ from
M into M∗, and an embedding ψ 7→ ψ̂ from Aut(Q) to
Aut(M∗) such that:

(1) λ(M) ≺cofinal M∗;
(2) J is the longest initial segment of M that is pointwise
fixed by λ;

(3) SSyJ(M) = SSyJ(M∗);

(4) ψ̂(m) = m for all m ∈M and all ψ ∈ Aut(Q);

(5) J = Ifix(ψ̂) := {x ∈ M∗ : ∀y ≤ x ψ̂(y) = y} for all
ψ ∈ Aut(Q); and

(6)
{

m ∈M∗ : ψ̂1(m) 6= ψ̂2(m)
}

is downward cofinal in

M∗\J for all distinct ψ1 and ψ2 in Aut(Q).
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Questions About the Germomorphism Group

(1) Is there an uncountable M for which G (M) is the trivial
group?

(2) Suppose M is recursively saturated. What is the
relationship between Aut(M)and G (M)?

(3) What kind of groups can arise as G (M)?
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