
Intrinsic complexity in arithmetic (and algebra)

Yiannis N. Moschovakis
UCLA and University of Athens

JAF32, Athens, June 26, 2013

Is the Euclidean algorithm optimal from its primitives?
For a, b ∈ N = {0, 1, . . .}, a ≥ b ≥ 1,

(ε) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

where a = iq(a, b)b + rem(a, b) (0 ≤ rem(a, b) < b)

calls{rem}(ε, a, b) = the number of divisions ε needs to compute gcd(a, b)

≤ 2 log(b) (a ≥ b ≥ 2)

I Is ε optimal for computing gcd(a, b) from {rem, =0}?
I a⊥⊥b ⇐⇒ gcd(a, b) = 1

Is ε optimal for deciding coprimeness from {rem, =0, =1}?
I And is this true for all algorithms from {rem, =0, =1}?

Conjecture: For every algorithm α which decides coprimeness
from {rem, =0,=1}
(∃r > 0)(for infinitely many a ≥ b, calls{rem}(α, a, b) ≥ r log(a)

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 1/18

Is the Euclidean algorithm optimal from its primitives?
For a, b ∈ N = {0, 1, . . .}, a ≥ b ≥ 1,

(ε) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

where a = iq(a, b)b + rem(a, b) (0 ≤ rem(a, b) < b)

calls{rem}(ε, a, b) = the number of divisions ε needs to compute gcd(a, b)

≤ 2 log(b) (a ≥ b ≥ 2)

I Is ε optimal for computing gcd(a, b) from {rem, =0}?
I a⊥⊥b ⇐⇒ gcd(a, b) = 1

Is ε optimal for deciding coprimeness from {rem, =0, =1}?
I And is this true for all algorithms from {rem, =0, =1}?

Conjecture: For every algorithm α which decides coprimeness
from {rem, =0,=1}
(∃r > 0)(for infinitely many a ≥ b, calls{rem}(α, a, b) ≥ r log(a)

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 1/18

Is the Euclidean algorithm optimal from its primitives?
For a, b ∈ N = {0, 1, . . .}, a ≥ b ≥ 1,

(ε) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

where a = iq(a, b)b + rem(a, b) (0 ≤ rem(a, b) < b)

calls{rem}(ε, a, b) = the number of divisions ε needs to compute gcd(a, b)

≤ 2 log(b) (a ≥ b ≥ 2)

I Is ε optimal for computing gcd(a, b) from {rem, =0}?
I a⊥⊥b ⇐⇒ gcd(a, b) = 1

Is ε optimal for deciding coprimeness from {rem, =0, =1}?
I And is this true for all algorithms from {rem, =0, =1}?

Conjecture: For every algorithm α which decides coprimeness
from {rem, =0,=1}
(∃r > 0)(for infinitely many a ≥ b, calls{rem}(α, a, b) ≥ r log(a)

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 1/18

Is the Euclidean algorithm optimal from its primitives?
For a, b ∈ N = {0, 1, . . .}, a ≥ b ≥ 1,

(ε) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

where a = iq(a, b)b + rem(a, b) (0 ≤ rem(a, b) < b)

calls{rem}(ε, a, b) = the number of divisions ε needs to compute gcd(a, b)

≤ 2 log(b) (a ≥ b ≥ 2)

I Is ε optimal for computing gcd(a, b) from {rem, =0}?
I a⊥⊥b ⇐⇒ gcd(a, b) = 1

Is ε optimal for deciding coprimeness from {rem, =0, =1}?
I And is this true for all algorithms from {rem, =0, =1}?

Conjecture: For every algorithm α which decides coprimeness
from {rem, =0,=1}
(∃r > 0)(for infinitely many a ≥ b, calls{rem}(α, a, b) ≥ r log(a)

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 1/18

Is the Euclidean algorithm optimal from its primitives?
For a, b ∈ N = {0, 1, . . .}, a ≥ b ≥ 1,

(ε) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

where a = iq(a, b)b + rem(a, b) (0 ≤ rem(a, b) < b)

calls{rem}(ε, a, b) = the number of divisions ε needs to compute gcd(a, b)

≤ 2 log(b) (a ≥ b ≥ 2)

I Is ε optimal for computing gcd(a, b) from {rem, =0}?
I a⊥⊥b ⇐⇒ gcd(a, b) = 1

Is ε optimal for deciding coprimeness from {rem, =0, =1}?
I And is this true for all algorithms from {rem, =0, =1}?

Conjecture: For every algorithm α which decides coprimeness
from {rem, =0,=1}
(∃r > 0)(for infinitely many a ≥ b, calls{rem}(α, a, b) ≥ r log(a)

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 1/18

Is the Euclidean algorithm optimal from its primitives?
For a, b ∈ N = {0, 1, . . .}, a ≥ b ≥ 1,

(ε) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

where a = iq(a, b)b + rem(a, b) (0 ≤ rem(a, b) < b)

calls{rem}(ε, a, b) = the number of divisions ε needs to compute gcd(a, b)

≤ 2 log(b) (a ≥ b ≥ 2)

I Is ε optimal for computing gcd(a, b) from {rem, =0}?
I a⊥⊥b ⇐⇒ gcd(a, b) = 1

Is ε optimal for deciding coprimeness from {rem, =0, =1}?
I And is this true for all algorithms from {rem, =0, =1}?

Conjecture: For every algorithm α which decides coprimeness
from {rem, =0,=1}
(∃r > 0)(for infinitely many a ≥ b, calls{rem}(α, a, b) ≥ r log(a)

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 1/18

Is the Euclidean algorithm optimal from its primitives?
For a, b ∈ N = {0, 1, . . .}, a ≥ b ≥ 1,

(ε) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

where a = iq(a, b)b + rem(a, b) (0 ≤ rem(a, b) < b)

calls{rem}(ε, a, b) = the number of divisions ε needs to compute gcd(a, b)

≤ 2 log(b) (a ≥ b ≥ 2)

I Is ε optimal for computing gcd(a, b) from {rem, =0}?
I a⊥⊥b ⇐⇒ gcd(a, b) = 1

Is ε optimal for deciding coprimeness from {rem, =0, =1}?
I And is this true for all algorithms from {rem, =0, =1}?

Conjecture: For every algorithm α which decides coprimeness
from {rem, =0,=1}
(∃r > 0)(for infinitely many a ≥ b, calls{rem}(α, a, b) ≥ r log(a)

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 1/18

The value complexities I

• A classical method for establishing lower bounds that restrict all
algorithms assuming practically nothing about “what algorithms are”:

Horner’s rule: For any field F and n ≥ 1, the value of a
polynomial of degree n can be computed using no more than n
multiplications and n additions in F :

a0 + a1x + a2x
2 + · · ·+ anx

n = a0 + x
(
a1 + a2x + · · ·+ anx

n−1
)

Theorem (Pan 1966, (Winograd 1967, 1970))

Every algorithm from the complex field operations requires at least
n multiplications/divisions and at least n additions/subtractions to
compute a0 + a1x + a2x

2 + · · ·+ anx
n when ~a, x are algebraically

independent complex numbers (the generic case)

. . . because it takes that many applications of the field operations
to construct the value a0 + a1x + a2x

2 + · · ·+ anx
n from a0, . . . , an, x

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 2/18

The value complexities I

• A classical method for establishing lower bounds that restrict all
algorithms assuming practically nothing about “what algorithms are”:

Horner’s rule: For any field F and n ≥ 1, the value of a
polynomial of degree n can be computed using no more than n
multiplications and n additions in F :

a0 + a1x + a2x
2 + · · ·+ anx

n = a0 + x
(
a1 + a2x + · · ·+ anx

n−1
)

Theorem (Pan 1966, (Winograd 1967, 1970))

Every algorithm from the complex field operations requires at least
n multiplications/divisions and at least n additions/subtractions to
compute a0 + a1x + a2x

2 + · · ·+ anx
n when ~a, x are algebraically

independent complex numbers (the generic case)

. . . because it takes that many applications of the field operations
to construct the value a0 + a1x + a2x

2 + · · ·+ anx
n from a0, . . . , an, x

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 2/18

The value complexities I

• A classical method for establishing lower bounds that restrict all
algorithms assuming practically nothing about “what algorithms are”:

Horner’s rule: For any field F and n ≥ 1, the value of a
polynomial of degree n can be computed using no more than n
multiplications and n additions in F :

a0 + a1x + a2x
2 + · · ·+ anx

n = a0 + x
(
a1 + a2x + · · ·+ anx

n−1
)

Theorem (Pan 1966, (Winograd 1967, 1970))

Every algorithm from the complex field operations requires at least
n multiplications/divisions and at least n additions/subtractions to
compute a0 + a1x + a2x

2 + · · ·+ anx
n when ~a, x are algebraically

independent complex numbers (the generic case)

. . . because it takes that many applications of the field operations
to construct the value a0 + a1x + a2x

2 + · · ·+ anx
n from a0, . . . , an, x

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 2/18

The value complexities I

• A classical method for establishing lower bounds that restrict all
algorithms assuming practically nothing about “what algorithms are”:

Horner’s rule: For any field F and n ≥ 1, the value of a
polynomial of degree n can be computed using no more than n
multiplications and n additions in F :

a0 + a1x + a2x
2 + · · ·+ anx

n = a0 + x
(
a1 + a2x + · · ·+ anx

n−1
)

Theorem (Pan 1966, (Winograd 1967, 1970))

Every algorithm from the complex field operations requires at least
n multiplications/divisions and at least n additions/subtractions to
compute a0 + a1x + a2x

2 + · · ·+ anx
n when ~a, x are algebraically

independent complex numbers (the generic case)

. . . because it takes that many applications of the field operations
to construct the value a0 + a1x + a2x

2 + · · ·+ anx
n from a0, . . . , an, x

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 2/18

The value complexities II

Theorem (van den Dries)

If an algorithm α computes gcd(x , y) from 0, 1, +,−, iq, rem, ·, < and

calls(α, x , y) = the number of calls to the primitives

α makes to compute gcd(x , y),

then for all a > b such that a2 = 2b2 + 1 (Pell pairs),

calls(α, a + 1, b) ≥ 1

4

√
log log b

. . . because it takes at least that many applications of the primitives
to construct the value gcd(a + 1, b) when (a, b) is a Pell pair
I This method cannot yield lower bounds for decision problems

(because their output (tt or ff) is available with no computation)
I and it is open whether algorithms that decide coprimeness

from these primitives (which include multiplication) must execute
O(

√
log log max(x , y)) operations on an infinite set of inputs

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 3/18

The value complexities II

Theorem (van den Dries)

If an algorithm α computes gcd(x , y) from 0, 1, +,−, iq, rem, ·, < and

calls(α, x , y) = the number of calls to the primitives

α makes to compute gcd(x , y),

then for all a > b such that a2 = 2b2 + 1 (Pell pairs),

calls(α, a + 1, b) ≥ 1

4

√
log log b

. . . because it takes at least that many applications of the primitives
to construct the value gcd(a + 1, b) when (a, b) is a Pell pair
I This method cannot yield lower bounds for decision problems

(because their output (tt or ff) is available with no computation)
I and it is open whether algorithms that decide coprimeness

from these primitives (which include multiplication) must execute
O(

√
log log max(x , y)) operations on an infinite set of inputs

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 3/18

The value complexities II

Theorem (van den Dries)

If an algorithm α computes gcd(x , y) from 0, 1, +,−, iq, rem, ·, < and

calls(α, x , y) = the number of calls to the primitives

α makes to compute gcd(x , y),

then for all a > b such that a2 = 2b2 + 1 (Pell pairs),

calls(α, a + 1, b) ≥ 1

4

√
log log b

. . . because it takes at least that many applications of the primitives
to construct the value gcd(a + 1, b) when (a, b) is a Pell pair
I This method cannot yield lower bounds for decision problems

(because their output (tt or ff) is available with no computation)
I and it is open whether algorithms that decide coprimeness

from these primitives (which include multiplication) must execute
O(

√
log log max(x , y)) operations on an infinite set of inputs

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 3/18

The value complexities II

Theorem (van den Dries)

If an algorithm α computes gcd(x , y) from 0, 1, +,−, iq, rem, ·, < and

calls(α, x , y) = the number of calls to the primitives

α makes to compute gcd(x , y),

then for all a > b such that a2 = 2b2 + 1 (Pell pairs),

calls(α, a + 1, b) ≥ 1

4

√
log log b

. . . because it takes at least that many applications of the primitives
to construct the value gcd(a + 1, b) when (a, b) is a Pell pair
I This method cannot yield lower bounds for decision problems

(because their output (tt or ff) is available with no computation)
I and it is open whether algorithms that decide coprimeness

from these primitives (which include multiplication) must execute
O(

√
log log max(x , y)) operations on an infinite set of inputs

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 3/18

(Partial) structures
I A (partial) structure is a tuple A = (A,ΦA) where Φ is a set

of function and relation symbols and ΦA = {φA}φ∈Φ, where
with sφ ∈ {a, boole}, Aa = A, Aboole = {tt, ff},

φA : Anφ ⇀ Asφ
i.e., φA : Anφ ⇀ A or φA : Anφ ⇀ {tt, ff}

I N = (N, 0, 1, +, ·, =), the standard structure of arithmetic

I Nε = (N, rem,=0,=1), the Euclidean structure

I Nε¹U = (U, rem ¹U, =0¹U, =1¹U) where U ⊆ N and

(f ¹U)(x , y) = w ⇐⇒ ~x ∈ Un, w ∈ Us & f (~x) = w

I The (equational) diagram of a Φ-structure is the set of its
basic equations,

eqdiag(A) = {(φ,~x , w) : ~x ∈ Anφ , w ∈ Asφ
, and φA(~x) = w}

I We may assume that A is completely determined by eqdiag(A)

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 4/18

(Partial) structures
I A (partial) structure is a tuple A = (A,ΦA) where Φ is a set

of function and relation symbols and ΦA = {φA}φ∈Φ, where
with sφ ∈ {a, boole}, Aa = A, Aboole = {tt, ff},

φA : Anφ ⇀ Asφ
i.e., φA : Anφ ⇀ A or φA : Anφ ⇀ {tt, ff}

I N = (N, 0, 1, +, ·, =), the standard structure of arithmetic

I Nε = (N, rem,=0,=1), the Euclidean structure

I Nε¹U = (U, rem ¹U, =0¹U, =1¹U) where U ⊆ N and

(f ¹U)(x , y) = w ⇐⇒ ~x ∈ Un, w ∈ Us & f (~x) = w

I The (equational) diagram of a Φ-structure is the set of its
basic equations,

eqdiag(A) = {(φ,~x , w) : ~x ∈ Anφ , w ∈ Asφ
, and φA(~x) = w}

I We may assume that A is completely determined by eqdiag(A)

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 4/18

(Partial) structures
I A (partial) structure is a tuple A = (A,ΦA) where Φ is a set

of function and relation symbols and ΦA = {φA}φ∈Φ, where
with sφ ∈ {a, boole}, Aa = A, Aboole = {tt, ff},

φA : Anφ ⇀ Asφ
i.e., φA : Anφ ⇀ A or φA : Anφ ⇀ {tt, ff}

I N = (N, 0, 1, +, ·, =), the standard structure of arithmetic

I Nε = (N, rem,=0,=1), the Euclidean structure

I Nε¹U = (U, rem ¹U, =0¹U, =1¹U) where U ⊆ N and

(f ¹U)(x , y) = w ⇐⇒ ~x ∈ Un, w ∈ Us & f (~x) = w

I The (equational) diagram of a Φ-structure is the set of its
basic equations,

eqdiag(A) = {(φ,~x , w) : ~x ∈ Anφ , w ∈ Asφ
, and φA(~x) = w}

I We may assume that A is completely determined by eqdiag(A)

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 4/18

(Partial) structures
I A (partial) structure is a tuple A = (A,ΦA) where Φ is a set

of function and relation symbols and ΦA = {φA}φ∈Φ, where
with sφ ∈ {a, boole}, Aa = A, Aboole = {tt, ff},

φA : Anφ ⇀ Asφ
i.e., φA : Anφ ⇀ A or φA : Anφ ⇀ {tt, ff}

I N = (N, 0, 1, +, ·, =), the standard structure of arithmetic

I Nε = (N, rem,=0,=1), the Euclidean structure

I Nε¹U = (U, rem ¹U, =0¹U, =1¹U) where U ⊆ N and

(f ¹U)(x , y) = w ⇐⇒ ~x ∈ Un, w ∈ Us & f (~x) = w

I The (equational) diagram of a Φ-structure is the set of its
basic equations,

eqdiag(A) = {(φ,~x , w) : ~x ∈ Anφ , w ∈ Asφ
, and φA(~x) = w}

I We may assume that A is completely determined by eqdiag(A)

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 4/18

(Partial) structures
I A (partial) structure is a tuple A = (A,ΦA) where Φ is a set

of function and relation symbols and ΦA = {φA}φ∈Φ, where
with sφ ∈ {a, boole}, Aa = A, Aboole = {tt, ff},

φA : Anφ ⇀ Asφ
i.e., φA : Anφ ⇀ A or φA : Anφ ⇀ {tt, ff}

I N = (N, 0, 1, +, ·, =), the standard structure of arithmetic

I Nε = (N, rem,=0,=1), the Euclidean structure

I Nε¹U = (U, rem ¹U, =0¹U, =1¹U) where U ⊆ N and

(f ¹U)(x , y) = w ⇐⇒ ~x ∈ Un, w ∈ Us & f (~x) = w

I The (equational) diagram of a Φ-structure is the set of its
basic equations,

eqdiag(A) = {(φ,~x , w) : ~x ∈ Anφ , w ∈ Asφ
, and φA(~x) = w}

I We may assume that A is completely determined by eqdiag(A)

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 4/18

Sample result: the intrinsic calls complexity

With each structure A = (A,Φ), each Φ0 ⊆ Φ and each (partial)
function or relation f : An ⇀ As we will associate a partial function

~x 7→ callsΦ0(A, f ,~x) ∈ N (f (~x)↓)

such that:

(?) If α is any algorithm from Φ which computes f , then

callsΦ0(A, f ,~x) ≤ callsΦ0(α,~x) (f (~x)↓)

I (?) is not trivial: in some important examples in arithmetic
and algebra it yields the best known lower bound results

I (?) is a theorem for concrete algorithms specified by the usual
computation models; it is plausible for all algorithms from Φ

I The results are about several natural complexity measures on
algorithms from primitives, not only “the number of calls to Φ0”

I The methods are from abstract model theory

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 5/18

Sample result: the intrinsic calls complexity

With each structure A = (A,Φ), each Φ0 ⊆ Φ and each (partial)
function or relation f : An ⇀ As we will associate a partial function

~x 7→ callsΦ0(A, f ,~x) ∈ N (f (~x)↓)

such that:

(?) If α is any algorithm from Φ which computes f , then

callsΦ0(A, f ,~x) ≤ callsΦ0(α,~x) (f (~x)↓)

I (?) is not trivial: in some important examples in arithmetic
and algebra it yields the best known lower bound results

I (?) is a theorem for concrete algorithms specified by the usual
computation models; it is plausible for all algorithms from Φ

I The results are about several natural complexity measures on
algorithms from primitives, not only “the number of calls to Φ0”

I The methods are from abstract model theory

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 5/18

Sample result: the intrinsic calls complexity

With each structure A = (A,Φ), each Φ0 ⊆ Φ and each (partial)
function or relation f : An ⇀ As we will associate a partial function

~x 7→ callsΦ0(A, f ,~x) ∈ N (f (~x)↓)

such that:

(?) If α is any algorithm from Φ which computes f , then

callsΦ0(A, f ,~x) ≤ callsΦ0(α,~x) (f (~x)↓)

I (?) is not trivial: in some important examples in arithmetic
and algebra it yields the best known lower bound results

I (?) is a theorem for concrete algorithms specified by the usual
computation models; it is plausible for all algorithms from Φ

I The results are about several natural complexity measures on
algorithms from primitives, not only “the number of calls to Φ0”

I The methods are from abstract model theory

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 5/18

Sample result: the intrinsic calls complexity

With each structure A = (A,Φ), each Φ0 ⊆ Φ and each (partial)
function or relation f : An ⇀ As we will associate a partial function

~x 7→ callsΦ0(A, f ,~x) ∈ N (f (~x)↓)

such that:

(?) If α is any algorithm from Φ which computes f , then

callsΦ0(A, f ,~x) ≤ callsΦ0(α,~x) (f (~x)↓)

I (?) is not trivial: in some important examples in arithmetic
and algebra it yields the best known lower bound results

I (?) is a theorem for concrete algorithms specified by the usual
computation models; it is plausible for all algorithms from Φ

I The results are about several natural complexity measures on
algorithms from primitives, not only “the number of calls to Φ0”

I The methods are from abstract model theory

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 5/18

Sample result: the intrinsic calls complexity

With each structure A = (A,Φ), each Φ0 ⊆ Φ and each (partial)
function or relation f : An ⇀ As we will associate a partial function

~x 7→ callsΦ0(A, f ,~x) ∈ N (f (~x)↓)

such that:

(?) If α is any algorithm from Φ which computes f , then

callsΦ0(A, f ,~x) ≤ callsΦ0(α,~x) (f (~x)↓)

I (?) is not trivial: in some important examples in arithmetic
and algebra it yields the best known lower bound results

I (?) is a theorem for concrete algorithms specified by the usual
computation models; it is plausible for all algorithms from Φ

I The results are about several natural complexity measures on
algorithms from primitives, not only “the number of calls to Φ0”

I The methods are from abstract model theory

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 5/18

Sample result: the intrinsic calls complexity

With each structure A = (A,Φ), each Φ0 ⊆ Φ and each (partial)
function or relation f : An ⇀ As we will associate a partial function

~x 7→ callsΦ0(A, f ,~x) ∈ N (f (~x)↓)

such that:

(?) If α is any algorithm from Φ which computes f , then

callsΦ0(A, f ,~x) ≤ callsΦ0(α,~x) (f (~x)↓)

I (?) is not trivial: in some important examples in arithmetic
and algebra it yields the best known lower bound results

I (?) is a theorem for concrete algorithms specified by the usual
computation models; it is plausible for all algorithms from Φ

I The results are about several natural complexity measures on
algorithms from primitives, not only “the number of calls to Φ0”

I The methods are from abstract model theory

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 5/18

Sample result: the intrinsic calls complexity

With each structure A = (A,Φ), each Φ0 ⊆ Φ and each (partial)
function or relation f : An ⇀ As we will associate a partial function

~x 7→ callsΦ0(A, f ,~x) ∈ N (f (~x)↓)

such that:

(?) If α is any algorithm from Φ which computes f , then

callsΦ0(A, f ,~x) ≤ callsΦ0(α,~x) (f (~x)↓)

I (?) is not trivial: in some important examples in arithmetic
and algebra it yields the best known lower bound results

I (?) is a theorem for concrete algorithms specified by the usual
computation models; it is plausible for all algorithms from Φ

I The results are about several natural complexity measures on
algorithms from primitives, not only “the number of calls to Φ0”

I The methods are from abstract model theory

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 5/18

Sample result: the intrinsic calls complexity

With each structure A = (A,Φ), each Φ0 ⊆ Φ and each (partial)
function or relation f : An ⇀ As we will associate a partial function

~x 7→ callsΦ0(A, f ,~x) ∈ N (f (~x)↓)

such that:

(?) If α is any algorithm from Φ which computes f , then

callsΦ0(A, f ,~x) ≤ callsΦ0(α,~x) (f (~x)↓)

I (?) is not trivial: in some important examples in arithmetic
and algebra it yields the best known lower bound results

I (?) is a theorem for concrete algorithms specified by the usual
computation models; it is plausible for all algorithms from Φ

I The results are about several natural complexity measures on
algorithms from primitives, not only “the number of calls to Φ0”

I The methods are from abstract model theory

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 5/18

Slogan: Absolute lower bound results
are the undecidability facts about decidable problems

(1) Preliminaries

(2) Uniform processes

(3) Comprimeness in N
(4) Polynomial 0-testing

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004)
Arithmetic complexity (with van Den Dries, 2009)
Recursion and complexity (notes) www.math.ucla.edu/∼ynm
(currently under repair)

Y. Mansour, B. Schieber, and P. Tiwari (1991)
A lower bound for integer greatest common divisor computations,
Lower bounds for computations with the floor operation

J. Meidânis (1991): Lower bounds for arithmetic problems
P. Bürgisser and T. Lickteig (1992)

Verification complexity of linear prime ideals
P. Bürgisser, T. Lickteig, and M. Shub (1992),

Test complexity of generic polynomials

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 6/18

Slogan: Absolute lower bound results
are the undecidability facts about decidable problems

(1) Preliminaries

(2) Uniform processes

(3) Comprimeness in N
(4) Polynomial 0-testing

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004)
Arithmetic complexity (with van Den Dries, 2009)
Recursion and complexity (notes) www.math.ucla.edu/∼ynm
(currently under repair)

Y. Mansour, B. Schieber, and P. Tiwari (1991)
A lower bound for integer greatest common divisor computations,
Lower bounds for computations with the floor operation

J. Meidânis (1991): Lower bounds for arithmetic problems
P. Bürgisser and T. Lickteig (1992)

Verification complexity of linear prime ideals
P. Bürgisser, T. Lickteig, and M. Shub (1992),

Test complexity of generic polynomials

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 6/18

Slogan: Absolute lower bound results
are the undecidability facts about decidable problems

(1) Preliminaries

(2) Uniform processes

(3) Comprimeness in N
(4) Polynomial 0-testing

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004)
Arithmetic complexity (with van Den Dries, 2009)
Recursion and complexity (notes) www.math.ucla.edu/∼ynm
(currently under repair)

Y. Mansour, B. Schieber, and P. Tiwari (1991)
A lower bound for integer greatest common divisor computations,
Lower bounds for computations with the floor operation

J. Meidânis (1991): Lower bounds for arithmetic problems
P. Bürgisser and T. Lickteig (1992)

Verification complexity of linear prime ideals
P. Bürgisser, T. Lickteig, and M. Shub (1992),

Test complexity of generic polynomials

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 6/18

Slogan: Absolute lower bound results
are the undecidability facts about decidable problems

(1) Preliminaries

(2) Uniform processes

(3) Comprimeness in N
(4) Polynomial 0-testing

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004)
Arithmetic complexity (with van Den Dries, 2009)
Recursion and complexity (notes) www.math.ucla.edu/∼ynm
(currently under repair)

Y. Mansour, B. Schieber, and P. Tiwari (1991)
A lower bound for integer greatest common divisor computations,
Lower bounds for computations with the floor operation

J. Meidânis (1991): Lower bounds for arithmetic problems
P. Bürgisser and T. Lickteig (1992)

Verification complexity of linear prime ideals
P. Bürgisser, T. Lickteig, and M. Shub (1992),

Test complexity of generic polynomials

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 6/18

Substructures and homomorphisms

I Substructures (pieces):

U ⊆p A = (A,Φ) ⇐⇒ U ⊆ A & eqdiag(U) ⊆ eqdiag(A)

⇐⇒ U ⊆ A & (∀φ ∈ Φ)[φU v φA]

Substructures may be finite and not closed under Φ

I A homomorphism π : U ½ V is any π : U → V such that for
all φ ∈ Φ, x1, . . . , xn ∈ U,w ∈ Us , (with π(tt) = tt, π(ff) = ff)

φU(x1, . . . , xn) = w =⇒ φV(πx1, . . . , πxn) = πw

• May have x 6= y , π(x) = π(y), unless (=, x , y ,ff) ∈ eqdiag(U)
• π is an embedding if it is injective (in which case it preserves 6=)

I We use finite substructures U ⊆p A to represent calls to the
primitives executed during a computation in A

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 7/18

Substructures and homomorphisms

I Substructures (pieces):

U ⊆p A = (A,Φ) ⇐⇒ U ⊆ A & eqdiag(U) ⊆ eqdiag(A)

⇐⇒ U ⊆ A & (∀φ ∈ Φ)[φU v φA]

Substructures may be finite and not closed under Φ

I A homomorphism π : U ½ V is any π : U → V such that for
all φ ∈ Φ, x1, . . . , xn ∈ U,w ∈ Us , (with π(tt) = tt, π(ff) = ff)

φU(x1, . . . , xn) = w =⇒ φV(πx1, . . . , πxn) = πw

• May have x 6= y , π(x) = π(y), unless (=, x , y ,ff) ∈ eqdiag(U)
• π is an embedding if it is injective (in which case it preserves 6=)

I We use finite substructures U ⊆p A to represent calls to the
primitives executed during a computation in A

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 7/18

Substructures and homomorphisms

I Substructures (pieces):

U ⊆p A = (A,Φ) ⇐⇒ U ⊆ A & eqdiag(U) ⊆ eqdiag(A)

⇐⇒ U ⊆ A & (∀φ ∈ Φ)[φU v φA]

Substructures may be finite and not closed under Φ

I A homomorphism π : U ½ V is any π : U → V such that for
all φ ∈ Φ, x1, . . . , xn ∈ U,w ∈ Us , (with π(tt) = tt, π(ff) = ff)

φU(x1, . . . , xn) = w =⇒ φV(πx1, . . . , πxn) = πw

• May have x 6= y , π(x) = π(y), unless (=, x , y ,ff) ∈ eqdiag(U)
• π is an embedding if it is injective (in which case it preserves 6=)

I We use finite substructures U ⊆p A to represent calls to the
primitives executed during a computation in A

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 7/18

Substructures and homomorphisms

I Substructures (pieces):

U ⊆p A = (A,Φ) ⇐⇒ U ⊆ A & eqdiag(U) ⊆ eqdiag(A)

⇐⇒ U ⊆ A & (∀φ ∈ Φ)[φU v φA]

Substructures may be finite and not closed under Φ

I A homomorphism π : U ½ V is any π : U → V such that for
all φ ∈ Φ, x1, . . . , xn ∈ U,w ∈ Us , (with π(tt) = tt, π(ff) = ff)

φU(x1, . . . , xn) = w =⇒ φV(πx1, . . . , πxn) = πw

• May have x 6= y , π(x) = π(y), unless (=, x , y ,ff) ∈ eqdiag(U)
• π is an embedding if it is injective (in which case it preserves 6=)

I We use finite substructures U ⊆p A to represent calls to the
primitives executed during a computation in A

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 7/18

Substructures and homomorphisms

I Substructures (pieces):

U ⊆p A = (A,Φ) ⇐⇒ U ⊆ A & eqdiag(U) ⊆ eqdiag(A)

⇐⇒ U ⊆ A & (∀φ ∈ Φ)[φU v φA]

Substructures may be finite and not closed under Φ

I A homomorphism π : U ½ V is any π : U → V such that for
all φ ∈ Φ, x1, . . . , xn ∈ U,w ∈ Us , (with π(tt) = tt, π(ff) = ff)

φU(x1, . . . , xn) = w =⇒ φV(πx1, . . . , πxn) = πw

• May have x 6= y , π(x) = π(y), unless (=, x , y ,ff) ∈ eqdiag(U)
• π is an embedding if it is injective (in which case it preserves 6=)

I We use finite substructures U ⊆p A to represent calls to the
primitives executed during a computation in A

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 7/18

Substructures and homomorphisms

I Substructures (pieces):

U ⊆p A = (A,Φ) ⇐⇒ U ⊆ A & eqdiag(U) ⊆ eqdiag(A)

⇐⇒ U ⊆ A & (∀φ ∈ Φ)[φU v φA]

Substructures may be finite and not closed under Φ

I A homomorphism π : U ½ V is any π : U → V such that for
all φ ∈ Φ, x1, . . . , xn ∈ U,w ∈ Us , (with π(tt) = tt, π(ff) = ff)

φU(x1, . . . , xn) = w =⇒ φV(πx1, . . . , πxn) = πw

• May have x 6= y , π(x) = π(y), unless (=, x , y ,ff) ∈ eqdiag(U)
• π is an embedding if it is injective (in which case it preserves 6=)

I We use finite substructures U ⊆p A to represent calls to the
primitives executed during a computation in A

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 7/18

Algorithms from primitives – the basic intuition

An n-ary algorithm α of A = (A,Φ) (or from Φ)“computes” some
n-ary partial function or relation

α = αA : An ⇀ As

using the primitives in Φ as oracles and nothing else about A

We understand this to mean that in the course of a “computation”
of α(~x), the algorithm may request from the oracle for any φA any
particular value φA(~u), for arguments ~u which it has already
computed from ~x , and that if the oracles cooperate, then “the
computation” of α(~x) is completed in a finite number of “steps”

I The notion of a uniform process attempts to capture
minimally (in the style of abstract model theory) these aspects
of algorithms from primitives

I It does not capture their effectiveness, but their uniformity
—that an algorithm applies “the same procedure” to all
arguments in its domain

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 8/18

Algorithms from primitives – the basic intuition

An n-ary algorithm α of A = (A,Φ) (or from Φ)“computes” some
n-ary partial function or relation

α = αA : An ⇀ As

using the primitives in Φ as oracles and nothing else about A

We understand this to mean that in the course of a “computation”
of α(~x), the algorithm may request from the oracle for any φA any
particular value φA(~u), for arguments ~u which it has already
computed from ~x , and that if the oracles cooperate, then “the
computation” of α(~x) is completed in a finite number of “steps”

I The notion of a uniform process attempts to capture
minimally (in the style of abstract model theory) these aspects
of algorithms from primitives

I It does not capture their effectiveness, but their uniformity
—that an algorithm applies “the same procedure” to all
arguments in its domain

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 8/18

Algorithms from primitives – the basic intuition

An n-ary algorithm α of A = (A,Φ) (or from Φ)“computes” some
n-ary partial function or relation

α = αA : An ⇀ As

using the primitives in Φ as oracles and nothing else about A

We understand this to mean that in the course of a “computation”
of α(~x), the algorithm may request from the oracle for any φA any
particular value φA(~u), for arguments ~u which it has already
computed from ~x , and that if the oracles cooperate, then “the
computation” of α(~x) is completed in a finite number of “steps”

I The notion of a uniform process attempts to capture
minimally (in the style of abstract model theory) these aspects
of algorithms from primitives

I It does not capture their effectiveness, but their uniformity
—that an algorithm applies “the same procedure” to all
arguments in its domain

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 8/18

Algorithms from primitives – the basic intuition

An n-ary algorithm α of A = (A,Φ) (or from Φ)“computes” some
n-ary partial function or relation

α = αA : An ⇀ As

using the primitives in Φ as oracles and nothing else about A

We understand this to mean that in the course of a “computation”
of α(~x), the algorithm may request from the oracle for any φA any
particular value φA(~u), for arguments ~u which it has already
computed from ~x , and that if the oracles cooperate, then “the
computation” of α(~x) is completed in a finite number of “steps”

I The notion of a uniform process attempts to capture
minimally (in the style of abstract model theory) these aspects
of algorithms from primitives

I It does not capture their effectiveness, but their uniformity
—that an algorithm applies “the same procedure” to all
arguments in its domain

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 8/18

Uniform processes: I The Locality Axiom

A uniform process α of arity n and sort s of a structure
A = (A, ΦA) assigns to each substructure U ⊆p A an n-ary partial
function

αU : Un ⇀ Us

It computes the partial function or relation αA : An ⇀ As

I For an algorithm α, intuitively, αU is the restriction to U of
the partial function computed by α when the oracles respond
only to questions with answers in eqdiag(U)

We write

U ` α(~x) = w ⇐⇒ αU(~x) = w ,

U ` α(~x)↓ ⇐⇒ (∃w)[αU(~x) = w]

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 9/18

Uniform processes: I The Locality Axiom

A uniform process α of arity n and sort s of a structure
A = (A, ΦA) assigns to each substructure U ⊆p A an n-ary partial
function

αU : Un ⇀ Us

It computes the partial function or relation αA : An ⇀ As

I For an algorithm α, intuitively, αU is the restriction to U of
the partial function computed by α when the oracles respond
only to questions with answers in eqdiag(U)

We write

U ` α(~x) = w ⇐⇒ αU(~x) = w ,

U ` α(~x)↓ ⇐⇒ (∃w)[αU(~x) = w]

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 9/18

Uniform processes: I The Locality Axiom

A uniform process α of arity n and sort s of a structure
A = (A, ΦA) assigns to each substructure U ⊆p A an n-ary partial
function

αU : Un ⇀ Us

It computes the partial function or relation αA : An ⇀ As

I For an algorithm α, intuitively, αU is the restriction to U of
the partial function computed by α when the oracles respond
only to questions with answers in eqdiag(U)

We write

U ` α(~x) = w ⇐⇒ αU(~x) = w ,

U ` α(~x)↓ ⇐⇒ (∃w)[αU(~x) = w]

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 9/18

Uniform processes: II The Homomorphism Axiom

If α is an n-ary uniform process of A, U,V ⊆p A, and π : U → V
is a homomorphism, then

U ` α(~x) = w =⇒ V ` α(π~x) = πw (x1, . . . , xn ∈ U, w ∈ Us)

In particular, if U ⊆p A, then αUvαA

I For algorithms: when asked for φU(~x), the oracle for φ may
consistently provide φV(π~x), if π is a homomorphism

I This is obvious for the identity embedding I : U ½ A, but it
is a strong restriction for algorithms from rich primitives
(stacks, higher type constructs, etc.)

I It can be verified for the standard computation models
(deterministic and non-deterministic)
provided all their primitives are included in Φ

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 10/18

Uniform processes: II The Homomorphism Axiom

If α is an n-ary uniform process of A, U,V ⊆p A, and π : U → V
is a homomorphism, then

U ` α(~x) = w =⇒ V ` α(π~x) = πw (x1, . . . , xn ∈ U, w ∈ Us)

In particular, if U ⊆p A, then αUvαA

I For algorithms: when asked for φU(~x), the oracle for φ may
consistently provide φV(π~x), if π is a homomorphism

I This is obvious for the identity embedding I : U ½ A, but it
is a strong restriction for algorithms from rich primitives
(stacks, higher type constructs, etc.)

I It can be verified for the standard computation models
(deterministic and non-deterministic)
provided all their primitives are included in Φ

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 10/18

Uniform processes: II The Homomorphism Axiom

If α is an n-ary uniform process of A, U,V ⊆p A, and π : U → V
is a homomorphism, then

U ` α(~x) = w =⇒ V ` α(π~x) = πw (x1, . . . , xn ∈ U, w ∈ Us)

In particular, if U ⊆p A, then αUvαA

I For algorithms: when asked for φU(~x), the oracle for φ may
consistently provide φV(π~x), if π is a homomorphism

I This is obvious for the identity embedding I : U ½ A, but it
is a strong restriction for algorithms from rich primitives
(stacks, higher type constructs, etc.)

I It can be verified for the standard computation models
(deterministic and non-deterministic)
provided all their primitives are included in Φ

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 10/18

Uniform processes: II The Homomorphism Axiom

If α is an n-ary uniform process of A, U,V ⊆p A, and π : U → V
is a homomorphism, then

U ` α(~x) = w =⇒ V ` α(π~x) = πw (x1, . . . , xn ∈ U, w ∈ Us)

In particular, if U ⊆p A, then αUvαA

I For algorithms: when asked for φU(~x), the oracle for φ may
consistently provide φV(π~x), if π is a homomorphism

I This is obvious for the identity embedding I : U ½ A, but it
is a strong restriction for algorithms from rich primitives
(stacks, higher type constructs, etc.)

I It can be verified for the standard computation models
(deterministic and non-deterministic)
provided all their primitives are included in Φ

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 10/18

Uniform processes: III The Finiteness Axiom

If α is an n-ary uniform process of A, then

A ` α(~x) = w

=⇒ there is a finite U ⊆p A generated by ~x such that U ` α(~x) = w

I For every call φ(~u) to the primitives, the algorithm must
construct the arguments ~u, and so the entire computation
takes place within a finite substructure generated by the input ~x

We write

U `c α(~x) = w ⇐⇒ U is finite, generated by ~x and U ` α(~x) = w ,

U `c α(~x)↓ ⇐⇒ (∃w)[U `c α(~x) = w]

and we think of (U,~x ,w) as a computation of α on the input ~x

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 11/18

Uniform processes: III The Finiteness Axiom

If α is an n-ary uniform process of A, then

A ` α(~x) = w

=⇒ there is a finite U ⊆p A generated by ~x such that U ` α(~x) = w

I For every call φ(~u) to the primitives, the algorithm must
construct the arguments ~u, and so the entire computation
takes place within a finite substructure generated by the input ~x

We write

U `c α(~x) = w ⇐⇒ U is finite, generated by ~x and U ` α(~x) = w ,

U `c α(~x)↓ ⇐⇒ (∃w)[U `c α(~x) = w]

and we think of (U,~x ,w) as a computation of α on the input ~x

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 11/18

Uniform processes: III The Finiteness Axiom

If α is an n-ary uniform process of A, then

A ` α(~x) = w

=⇒ there is a finite U ⊆p A generated by ~x such that U ` α(~x) = w

I For every call φ(~u) to the primitives, the algorithm must
construct the arguments ~u, and so the entire computation
takes place within a finite substructure generated by the input ~x

We write

U `c α(~x) = w ⇐⇒ U is finite, generated by ~x and U ` α(~x) = w ,

U `c α(~x)↓ ⇐⇒ (∃w)[U `c α(~x) = w]

and we think of (U,~x ,w) as a computation of α on the input ~x

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 11/18

Uniform processes, summary
I I The Locality Axiom:

A uniform process α of arity n and sort s of a structure
A = (A, ΦA) assigns to each substructure U ⊆p A an n-ary
partial function

αU : Un ⇀ Us

It computes the partial function or relation αA : An ⇀ As

U ` α(~x)↓ ⇐⇒ αU(~x)↓
I II The Homomorphism Axiom:

If U,V ⊆p A and π : U → V is a homomorphism, then

αU(~x) = w =⇒ αV(π~x) = πw

U `c α(~x)↓ ⇐⇒ U is finite, generated by ~x and αU(~x)↓
I III The Finiteness Axiom:

A ` α(~x)↓ =⇒ (∃U ⊆p A)[U `c α(~x)↓]

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 12/18

Uniform processes, summary
I I The Locality Axiom:

A uniform process α of arity n and sort s of a structure
A = (A, ΦA) assigns to each substructure U ⊆p A an n-ary
partial function

αU : Un ⇀ Us

It computes the partial function or relation αA : An ⇀ As

U ` α(~x)↓ ⇐⇒ αU(~x)↓
I II The Homomorphism Axiom:

If U,V ⊆p A and π : U → V is a homomorphism, then

αU(~x) = w =⇒ αV(π~x) = πw

U `c α(~x)↓ ⇐⇒ U is finite, generated by ~x and αU(~x)↓
I III The Finiteness Axiom:

A ` α(~x)↓ =⇒ (∃U ⊆p A)[U `c α(~x)↓]

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 12/18

Uniform processes, summary
I I The Locality Axiom:

A uniform process α of arity n and sort s of a structure
A = (A, ΦA) assigns to each substructure U ⊆p A an n-ary
partial function

αU : Un ⇀ Us

It computes the partial function or relation αA : An ⇀ As

U ` α(~x)↓ ⇐⇒ αU(~x)↓
I II The Homomorphism Axiom:

If U,V ⊆p A and π : U → V is a homomorphism, then

αU(~x) = w =⇒ αV(π~x) = πw

U `c α(~x)↓ ⇐⇒ U is finite, generated by ~x and αU(~x)↓
I III The Finiteness Axiom:

A ` α(~x)↓ =⇒ (∃U ⊆p A)[U `c α(~x)↓]

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 12/18

Uniform processes, summary
I I The Locality Axiom:

A uniform process α of arity n and sort s of a structure
A = (A, ΦA) assigns to each substructure U ⊆p A an n-ary
partial function

αU : Un ⇀ Us

It computes the partial function or relation αA : An ⇀ As

U ` α(~x)↓ ⇐⇒ αU(~x)↓
I II The Homomorphism Axiom:

If U,V ⊆p A and π : U → V is a homomorphism, then

αU(~x) = w =⇒ αV(π~x) = πw

U `c α(~x)↓ ⇐⇒ U is finite, generated by ~x and αU(~x)↓
I III The Finiteness Axiom:

A ` α(~x)↓ =⇒ (∃U ⊆p A)[U `c α(~x)↓]

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 12/18

Complexity measures for uniform processes

I A substructure norm µ on A assigns to each finite U ⊆p A
generated by ~x ∈ Un a number µ(U,~x)

I Cµ(α,~x) = min{µ(U,~x) : U `c α(~x)↓}

I callsΦ0(α,~x) = min{|eqdiag(U ¹Φ0)| : U `c α(~x)↓} (Φ0 ⊆ Φ)

(the least number of calls to φ ∈ Φ0 α must do to compute αA(~x))

I size(α,~x) = min{|U| : U `c α(~x)↓}
(the least number of elements of A that α must see)

I depth(α,~x) = min{depth(U,~x) : U `c α(~x)↓}
(the least number of calls α must execute in sequence)

Thm depth(α,~x) ≤ size(α,~x) ≤ calls(α,~x) (= callsΦ(α,~x))

These are not larger than standard definitions for concrete algorithms

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 13/18

Complexity measures for uniform processes

I A substructure norm µ on A assigns to each finite U ⊆p A
generated by ~x ∈ Un a number µ(U,~x)

I Cµ(α,~x) = min{µ(U,~x) : U `c α(~x)↓}

I callsΦ0(α,~x) = min{|eqdiag(U ¹Φ0)| : U `c α(~x)↓} (Φ0 ⊆ Φ)

(the least number of calls to φ ∈ Φ0 α must do to compute αA(~x))

I size(α,~x) = min{|U| : U `c α(~x)↓}
(the least number of elements of A that α must see)

I depth(α,~x) = min{depth(U,~x) : U `c α(~x)↓}
(the least number of calls α must execute in sequence)

Thm depth(α,~x) ≤ size(α,~x) ≤ calls(α,~x) (= callsΦ(α,~x))

These are not larger than standard definitions for concrete algorithms

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 13/18

Complexity measures for uniform processes

I A substructure norm µ on A assigns to each finite U ⊆p A
generated by ~x ∈ Un a number µ(U,~x)

I Cµ(α,~x) = min{µ(U,~x) : U `c α(~x)↓}

I callsΦ0(α,~x) = min{|eqdiag(U ¹Φ0)| : U `c α(~x)↓} (Φ0 ⊆ Φ)

(the least number of calls to φ ∈ Φ0 α must do to compute αA(~x))

I size(α,~x) = min{|U| : U `c α(~x)↓}
(the least number of elements of A that α must see)

I depth(α,~x) = min{depth(U,~x) : U `c α(~x)↓}
(the least number of calls α must execute in sequence)

Thm depth(α,~x) ≤ size(α,~x) ≤ calls(α,~x) (= callsΦ(α,~x))

These are not larger than standard definitions for concrete algorithms

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 13/18

Complexity measures for uniform processes

I A substructure norm µ on A assigns to each finite U ⊆p A
generated by ~x ∈ Un a number µ(U,~x)

I Cµ(α,~x) = min{µ(U,~x) : U `c α(~x)↓}

I callsΦ0(α,~x) = min{|eqdiag(U ¹Φ0)| : U `c α(~x)↓} (Φ0 ⊆ Φ)

(the least number of calls to φ ∈ Φ0 α must do to compute αA(~x))

I size(α,~x) = min{|U| : U `c α(~x)↓}
(the least number of elements of A that α must see)

I depth(α,~x) = min{depth(U,~x) : U `c α(~x)↓}
(the least number of calls α must execute in sequence)

Thm depth(α,~x) ≤ size(α,~x) ≤ calls(α,~x) (= callsΦ(α,~x))

These are not larger than standard definitions for concrete algorithms

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 13/18

Complexity measures for uniform processes

I A substructure norm µ on A assigns to each finite U ⊆p A
generated by ~x ∈ Un a number µ(U,~x)

I Cµ(α,~x) = min{µ(U,~x) : U `c α(~x)↓}

I callsΦ0(α,~x) = min{|eqdiag(U ¹Φ0)| : U `c α(~x)↓} (Φ0 ⊆ Φ)

(the least number of calls to φ ∈ Φ0 α must do to compute αA(~x))

I size(α,~x) = min{|U| : U `c α(~x)↓}
(the least number of elements of A that α must see)

I depth(α,~x) = min{depth(U,~x) : U `c α(~x)↓}
(the least number of calls α must execute in sequence)

Thm depth(α,~x) ≤ size(α,~x) ≤ calls(α,~x) (= callsΦ(α,~x))

These are not larger than standard definitions for concrete algorithms

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 13/18

Complexity measures for uniform processes

I A substructure norm µ on A assigns to each finite U ⊆p A
generated by ~x ∈ Un a number µ(U,~x)

I Cµ(α,~x) = min{µ(U,~x) : U `c α(~x)↓}

I callsΦ0(α,~x) = min{|eqdiag(U ¹Φ0)| : U `c α(~x)↓} (Φ0 ⊆ Φ)

(the least number of calls to φ ∈ Φ0 α must do to compute αA(~x))

I size(α,~x) = min{|U| : U `c α(~x)↓}
(the least number of elements of A that α must see)

I depth(α,~x) = min{depth(U,~x) : U `c α(~x)↓}
(the least number of calls α must execute in sequence)

Thm depth(α,~x) ≤ size(α,~x) ≤ calls(α,~x) (= callsΦ(α,~x))

These are not larger than standard definitions for concrete algorithms

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 13/18

Complexity measures for uniform processes

I A substructure norm µ on A assigns to each finite U ⊆p A
generated by ~x ∈ Un a number µ(U,~x)

I Cµ(α,~x) = min{µ(U,~x) : U `c α(~x)↓}

I callsΦ0(α,~x) = min{|eqdiag(U ¹Φ0)| : U `c α(~x)↓} (Φ0 ⊆ Φ)

(the least number of calls to φ ∈ Φ0 α must do to compute αA(~x))

I size(α,~x) = min{|U| : U `c α(~x)↓}
(the least number of elements of A that α must see)

I depth(α,~x) = min{depth(U,~x) : U `c α(~x)↓}
(the least number of calls α must execute in sequence)

Thm depth(α,~x) ≤ size(α,~x) ≤ calls(α,~x) (= callsΦ(α,~x))

These are not larger than standard definitions for concrete algorithms

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 13/18

Complexity measures for uniform processes

I A substructure norm µ on A assigns to each finite U ⊆p A
generated by ~x ∈ Un a number µ(U,~x)

I Cµ(α,~x) = min{µ(U,~x) : U `c α(~x)↓}

I callsΦ0(α,~x) = min{|eqdiag(U ¹Φ0)| : U `c α(~x)↓} (Φ0 ⊆ Φ)

(the least number of calls to φ ∈ Φ0 α must do to compute αA(~x))

I size(α,~x) = min{|U| : U `c α(~x)↓}
(the least number of elements of A that α must see)

I depth(α,~x) = min{depth(U,~x) : U `c α(~x)↓}
(the least number of calls α must execute in sequence)

Thm depth(α,~x) ≤ size(α,~x) ≤ calls(α,~x) (= callsΦ(α,~x))

These are not larger than standard definitions for concrete algorithms

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 13/18

? The forcing and certification relations

Suppose f : An ⇀ As , f (~x)↓ , U ⊆p A.

I A homomorphism π : U → A respects f at ~x if

~x ∈ Un & f (~x) ∈ Us & π(f (~x)) = f (π(~x))

so for relations ~x ∈ Un &
(
R(~x) ⇐⇒ R(π(~x))

)

U °A f (~x)↓ ⇐⇒ every homomorphism π : U → A respects f at ~x

U °A
c f (~x)↓ ⇐⇒ U is finite, generated by ~x and U °A f (~x)↓

The intrinsic complexities of f in A

I Cµ(A, f ,~x) = min{µ(U,~x) : U °c f (~x)↓} ∈ N ∪ {∞}
I callsΦ0(A, f ,~x) = min{|eqdiag(U ¹Φ0)| : U °A

c f (~x)↓}
I size(A, f ,~x) = min{|U| : U °A

c f (~x)↓}
I depth(A, f ,~x) = min{depth(U,~x) : U °A

c f (~x)↓}
Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 14/18

? The forcing and certification relations

Suppose f : An ⇀ As , f (~x)↓ , U ⊆p A.

I A homomorphism π : U → A respects f at ~x if

~x ∈ Un & f (~x) ∈ Us & π(f (~x)) = f (π(~x))

so for relations ~x ∈ Un &
(
R(~x) ⇐⇒ R(π(~x))

)

U °A f (~x)↓ ⇐⇒ every homomorphism π : U → A respects f at ~x

U °A
c f (~x)↓ ⇐⇒ U is finite, generated by ~x and U °A f (~x)↓

The intrinsic complexities of f in A

I Cµ(A, f ,~x) = min{µ(U,~x) : U °c f (~x)↓} ∈ N ∪ {∞}
I callsΦ0(A, f ,~x) = min{|eqdiag(U ¹Φ0)| : U °A

c f (~x)↓}
I size(A, f ,~x) = min{|U| : U °A

c f (~x)↓}
I depth(A, f ,~x) = min{depth(U,~x) : U °A

c f (~x)↓}
Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 14/18

? The forcing and certification relations

Suppose f : An ⇀ As , f (~x)↓ , U ⊆p A.

I A homomorphism π : U → A respects f at ~x if

~x ∈ Un & f (~x) ∈ Us & π(f (~x)) = f (π(~x))

so for relations ~x ∈ Un &
(
R(~x) ⇐⇒ R(π(~x))

)

U °A f (~x)↓ ⇐⇒ every homomorphism π : U → A respects f at ~x

U °A
c f (~x)↓ ⇐⇒ U is finite, generated by ~x and U °A f (~x)↓

The intrinsic complexities of f in A

I Cµ(A, f ,~x) = min{µ(U,~x) : U °c f (~x)↓} ∈ N ∪ {∞}
I callsΦ0(A, f ,~x) = min{|eqdiag(U ¹Φ0)| : U °A

c f (~x)↓}
I size(A, f ,~x) = min{|U| : U °A

c f (~x)↓}
I depth(A, f ,~x) = min{depth(U,~x) : U °A

c f (~x)↓}
Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 14/18

? The forcing and certification relations

Suppose f : An ⇀ As , f (~x)↓ , U ⊆p A.

I A homomorphism π : U → A respects f at ~x if

~x ∈ Un & f (~x) ∈ Us & π(f (~x)) = f (π(~x))

so for relations ~x ∈ Un &
(
R(~x) ⇐⇒ R(π(~x))

)

U °A f (~x)↓ ⇐⇒ every homomorphism π : U → A respects f at ~x

U °A
c f (~x)↓ ⇐⇒ U is finite, generated by ~x and U °A f (~x)↓

The intrinsic complexities of f in A

I Cµ(A, f ,~x) = min{µ(U,~x) : U °c f (~x)↓} ∈ N ∪ {∞}
I callsΦ0(A, f ,~x) = min{|eqdiag(U ¹Φ0)| : U °A

c f (~x)↓}
I size(A, f ,~x) = min{|U| : U °A

c f (~x)↓}
I depth(A, f ,~x) = min{depth(U,~x) : U °A

c f (~x)↓}
Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 14/18

? The forcing and certification relations

Suppose f : An ⇀ As , f (~x)↓ , U ⊆p A.

I A homomorphism π : U → A respects f at ~x if

~x ∈ Un & f (~x) ∈ Us & π(f (~x)) = f (π(~x))

so for relations ~x ∈ Un &
(
R(~x) ⇐⇒ R(π(~x))

)

U °A f (~x)↓ ⇐⇒ every homomorphism π : U → A respects f at ~x

U °A
c f (~x)↓ ⇐⇒ U is finite, generated by ~x and U °A f (~x)↓

The intrinsic complexities of f in A

I Cµ(A, f ,~x) = min{µ(U,~x) : U °c f (~x)↓} ∈ N ∪ {∞}
I callsΦ0(A, f ,~x) = min{|eqdiag(U ¹Φ0)| : U °A

c f (~x)↓}
I size(A, f ,~x) = min{|U| : U °A

c f (~x)↓}
I depth(A, f ,~x) = min{depth(U,~x) : U °A

c f (~x)↓}
Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 14/18

? The forcing and certification relations

Suppose f : An ⇀ As , f (~x)↓ , U ⊆p A.

I A homomorphism π : U → A respects f at ~x if

~x ∈ Un & f (~x) ∈ Us & π(f (~x)) = f (π(~x))

so for relations ~x ∈ Un &
(
R(~x) ⇐⇒ R(π(~x))

)

U °A f (~x)↓ ⇐⇒ every homomorphism π : U → A respects f at ~x

U °A
c f (~x)↓ ⇐⇒ U is finite, generated by ~x and U °A f (~x)↓

The intrinsic complexities of f in A

I Cµ(A, f ,~x) = min{µ(U,~x) : U °c f (~x)↓} ∈ N ∪ {∞}
I callsΦ0(A, f ,~x) = min{|eqdiag(U ¹Φ0)| : U °A

c f (~x)↓}
I size(A, f ,~x) = min{|U| : U °A

c f (~x)↓}
I depth(A, f ,~x) = min{depth(U,~x) : U °A

c f (~x)↓}
Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 14/18

Deriving lower bounds by constructing homomorphisms

• The following two facts are immediate from the definitions:

Lemma
If α is a uniform process which computes f : An ⇀ As in A, then

Cµ(A, f ,~x) ≤ Cµ(α,~x) (f (~x)↓)

Lemma (The homomorphism test)

Suppose µ is a substructure norm (e.g., callsΦ0 , size, depth) on a
Φ-structure A, f : An ⇀ As , f (~x)↓ , and

for every finite U ⊆p A which is generated by ~x ,(
f (~x) ∈ Us & µ(U,~x) < m

)
=⇒ (∃π : U → A)[f (π(~x)) 6= π(f (~x))];

then Cµ(A, f ,~x) ≥ m.

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 15/18

Deriving lower bounds by constructing homomorphisms

• The following two facts are immediate from the definitions:

Lemma
If α is a uniform process which computes f : An ⇀ As in A, then

Cµ(A, f ,~x) ≤ Cµ(α,~x) (f (~x)↓)

Lemma (The homomorphism test)

Suppose µ is a substructure norm (e.g., callsΦ0 , size, depth) on a
Φ-structure A, f : An ⇀ As , f (~x)↓ , and

for every finite U ⊆p A which is generated by ~x ,(
f (~x) ∈ Us & µ(U,~x) < m

)
=⇒ (∃π : U → A)[f (π(~x)) 6= π(f (~x))];

then Cµ(A, f ,~x) ≥ m.

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 15/18

Deriving lower bounds by constructing homomorphisms

• The following two facts are immediate from the definitions:

Lemma
If α is a uniform process which computes f : An ⇀ As in A, then

Cµ(A, f ,~x) ≤ Cµ(α,~x) (f (~x)↓)

Lemma (The homomorphism test)

Suppose µ is a substructure norm (e.g., callsΦ0 , size, depth) on a
Φ-structure A, f : An ⇀ As , f (~x)↓ , and

for every finite U ⊆p A which is generated by ~x ,(
f (~x) ∈ Us & µ(U,~x) < m

)
=⇒ (∃π : U → A)[f (π(~x)) 6= π(f (~x))];

then Cµ(A, f ,~x) ≥ m.

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 15/18

A lower bound for coprimeness on N
A = (N, 0, 1, +,−· , iq, rem, =, <,Ψ), Ψ a finite set of Presburger functions

Theorem (van den Dries, ynm, 2004, 2009)

If ξ > 1 is quadratic irrational, then for some r > 0 and all
sufficiently large coprime (a, b),

∣∣∣ξ − a

b

∣∣∣ <
1

b2
=⇒ depth(A,⊥⊥, a, b) ≥ r log log a. (1)

In particular, the conclusion of (1) holds with some r
I for positive Pell pairs (a, b) satisfying a2 = 2b2 + 1 (ξ =

√
2)

I for Fibonacci pairs (Fk+1, Fk) with k ≥ 3 (ξ = 1
2(1 +

√
5))

Theorem (Pratt, unpublished)

There is a non-deterministic algorithm εnd of Nε which decides
coprimeness, is at least as effective as the Euclidean everywhere and

calls(εnd , Fk+1, Fk) ≤ K log log Fk+1

I The theorem is best possible from its hypotheses

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 16/18

A lower bound for coprimeness on N
A = (N, 0, 1, +,−· , iq, rem, =, <,Ψ), Ψ a finite set of Presburger functions

Theorem (van den Dries, ynm, 2004, 2009)

If ξ > 1 is quadratic irrational, then for some r > 0 and all
sufficiently large coprime (a, b),

∣∣∣ξ − a

b

∣∣∣ <
1

b2
=⇒ depth(A,⊥⊥, a, b) ≥ r log log a. (1)

In particular, the conclusion of (1) holds with some r
I for positive Pell pairs (a, b) satisfying a2 = 2b2 + 1 (ξ =

√
2)

I for Fibonacci pairs (Fk+1, Fk) with k ≥ 3 (ξ = 1
2(1 +

√
5))

Theorem (Pratt, unpublished)

There is a non-deterministic algorithm εnd of Nε which decides
coprimeness, is at least as effective as the Euclidean everywhere and

calls(εnd , Fk+1, Fk) ≤ K log log Fk+1

I The theorem is best possible from its hypotheses

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 16/18

A lower bound for coprimeness on N
A = (N, 0, 1, +,−· , iq, rem, =, <,Ψ), Ψ a finite set of Presburger functions

Theorem (van den Dries, ynm, 2004, 2009)

If ξ > 1 is quadratic irrational, then for some r > 0 and all
sufficiently large coprime (a, b),

∣∣∣ξ − a

b

∣∣∣ <
1

b2
=⇒ depth(A,⊥⊥, a, b) ≥ r log log a. (1)

In particular, the conclusion of (1) holds with some r
I for positive Pell pairs (a, b) satisfying a2 = 2b2 + 1 (ξ =

√
2)

I for Fibonacci pairs (Fk+1, Fk) with k ≥ 3 (ξ = 1
2(1 +

√
5))

Theorem (Pratt, unpublished)

There is a non-deterministic algorithm εnd of Nε which decides
coprimeness, is at least as effective as the Euclidean everywhere and

calls(εnd , Fk+1, Fk) ≤ K log log Fk+1

I The theorem is best possible from its hypotheses

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 16/18

A lower bound for coprimeness on N
A = (N, 0, 1, +,−· , iq, rem, =, <,Ψ), Ψ a finite set of Presburger functions

Theorem (van den Dries, ynm, 2004, 2009)

If ξ > 1 is quadratic irrational, then for some r > 0 and all
sufficiently large coprime (a, b),

∣∣∣ξ − a

b

∣∣∣ <
1

b2
=⇒ depth(A,⊥⊥, a, b) ≥ r log log a. (1)

In particular, the conclusion of (1) holds with some r
I for positive Pell pairs (a, b) satisfying a2 = 2b2 + 1 (ξ =

√
2)

I for Fibonacci pairs (Fk+1, Fk) with k ≥ 3 (ξ = 1
2(1 +

√
5))

Theorem (Pratt, unpublished)

There is a non-deterministic algorithm εnd of Nε which decides
coprimeness, is at least as effective as the Euclidean everywhere and

calls(εnd , Fk+1, Fk) ≤ K log log Fk+1

I The theorem is best possible from its hypotheses

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 16/18

A lower bound for coprimeness on N
A = (N, 0, 1, +,−· , iq, rem, =, <,Ψ), Ψ a finite set of Presburger functions

Theorem (van den Dries, ynm, 2004, 2009)

If ξ > 1 is quadratic irrational, then for some r > 0 and all
sufficiently large coprime (a, b),

∣∣∣ξ − a

b

∣∣∣ <
1

b2
=⇒ depth(A,⊥⊥, a, b) ≥ r log log a. (1)

In particular, the conclusion of (1) holds with some r
I for positive Pell pairs (a, b) satisfying a2 = 2b2 + 1 (ξ =

√
2)

I for Fibonacci pairs (Fk+1, Fk) with k ≥ 3 (ξ = 1
2(1 +

√
5))

Theorem (Pratt, unpublished)

There is a non-deterministic algorithm εnd of Nε which decides
coprimeness, is at least as effective as the Euclidean everywhere and

calls(εnd , Fk+1, Fk) ≤ K log log Fk+1

I The theorem is best possible from its hypotheses

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 16/18

Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only
insist that it works for and uses only N-bit numbers?

A = (N, 0, 1,+,−· , iq, rem, =, <,Ψ) as before.
For any N, and any one of the intrinsic complexities as above, let

Cµ(A, f , 2N) = max{Cµ(A ¹[0, 2N), f ,~x) : x1, . . . , xn < 2N}

Theorem (van den Dries, ynm 2009)

For some rational number r > 0 and all sufficiently large N,

calls(A,⊥⊥, 2N) ≥ size(A,⊥⊥, 2N) ≥ r log N.

I Non-uniform lower bound for depth(A,⊥⊥, 2N)?

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 17/18

Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only
insist that it works for and uses only N-bit numbers?

A = (N, 0, 1,+,−· , iq, rem, =, <,Ψ) as before.
For any N, and any one of the intrinsic complexities as above, let

Cµ(A, f , 2N) = max{Cµ(A ¹[0, 2N), f ,~x) : x1, . . . , xn < 2N}

Theorem (van den Dries, ynm 2009)

For some rational number r > 0 and all sufficiently large N,

calls(A,⊥⊥, 2N) ≥ size(A,⊥⊥, 2N) ≥ r log N.

I Non-uniform lower bound for depth(A,⊥⊥, 2N)?

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 17/18

Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only
insist that it works for and uses only N-bit numbers?

A = (N, 0, 1,+,−· , iq, rem, =, <,Ψ) as before.
For any N, and any one of the intrinsic complexities as above, let

Cµ(A, f , 2N) = max{Cµ(A ¹[0, 2N), f ,~x) : x1, . . . , xn < 2N}

Theorem (van den Dries, ynm 2009)

For some rational number r > 0 and all sufficiently large N,

calls(A,⊥⊥, 2N) ≥ size(A,⊥⊥, 2N) ≥ r log N.

I Non-uniform lower bound for depth(A,⊥⊥, 2N)?

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 17/18

Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only
insist that it works for and uses only N-bit numbers?

A = (N, 0, 1,+,−· , iq, rem, =, <,Ψ) as before.
For any N, and any one of the intrinsic complexities as above, let

Cµ(A, f , 2N) = max{Cµ(A ¹[0, 2N), f ,~x) : x1, . . . , xn < 2N}

Theorem (van den Dries, ynm 2009)

For some rational number r > 0 and all sufficiently large N,

calls(A,⊥⊥, 2N) ≥ size(A,⊥⊥, 2N) ≥ r log N.

I Non-uniform lower bound for depth(A,⊥⊥, 2N)?

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 17/18

The optimality of Horner’s rule for polynomial 0-testing
The nullity relation on a field F :

NF (a0, . . . , an, x) ⇐⇒ a0 + a1x + a2x
2 + · · ·+ anx

n = 0

Theorem
Let F be the field of real or complex numbers.
If n ≥ 1 and a0, . . . , an, x are algebraically independent in F , then:

(1) calls{·,÷}(F , NF ,~a, x) = n

(2) calls{·,÷,=}(F , NF ,~a, x) = n + 1

I The method for constructing the required homomorphsms is
an elaboration of Winograd’s proof of the optimality of
Horner’s rule for poly evaluation

I It is quite different from the method used in arithmetic and
requires a homomorphism which is not an embedding in (2)

I Due to Bürgisser and Lickteig (1992) for algebraic decision
trees, along with much stronger results

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 18/18

The optimality of Horner’s rule for polynomial 0-testing
The nullity relation on a field F :

NF (a0, . . . , an, x) ⇐⇒ a0 + a1x + a2x
2 + · · ·+ anx

n = 0

Theorem
Let F be the field of real or complex numbers.
If n ≥ 1 and a0, . . . , an, x are algebraically independent in F , then:

(1) calls{·,÷}(F , NF ,~a, x) = n

(2) calls{·,÷,=}(F , NF ,~a, x) = n + 1

I The method for constructing the required homomorphsms is
an elaboration of Winograd’s proof of the optimality of
Horner’s rule for poly evaluation

I It is quite different from the method used in arithmetic and
requires a homomorphism which is not an embedding in (2)

I Due to Bürgisser and Lickteig (1992) for algebraic decision
trees, along with much stronger results

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 18/18

The optimality of Horner’s rule for polynomial 0-testing
The nullity relation on a field F :

NF (a0, . . . , an, x) ⇐⇒ a0 + a1x + a2x
2 + · · ·+ anx

n = 0

Theorem
Let F be the field of real or complex numbers.
If n ≥ 1 and a0, . . . , an, x are algebraically independent in F , then:

(1) calls{·,÷}(F , NF ,~a, x) = n

(2) calls{·,÷,=}(F , NF ,~a, x) = n + 1

I The method for constructing the required homomorphsms is
an elaboration of Winograd’s proof of the optimality of
Horner’s rule for poly evaluation

I It is quite different from the method used in arithmetic and
requires a homomorphism which is not an embedding in (2)

I Due to Bürgisser and Lickteig (1992) for algebraic decision
trees, along with much stronger results

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 18/18

The optimality of Horner’s rule for polynomial 0-testing
The nullity relation on a field F :

NF (a0, . . . , an, x) ⇐⇒ a0 + a1x + a2x
2 + · · ·+ anx

n = 0

Theorem
Let F be the field of real or complex numbers.
If n ≥ 1 and a0, . . . , an, x are algebraically independent in F , then:

(1) calls{·,÷}(F , NF ,~a, x) = n

(2) calls{·,÷,=}(F , NF ,~a, x) = n + 1

I The method for constructing the required homomorphsms is
an elaboration of Winograd’s proof of the optimality of
Horner’s rule for poly evaluation

I It is quite different from the method used in arithmetic and
requires a homomorphism which is not an embedding in (2)

I Due to Bürgisser and Lickteig (1992) for algebraic decision
trees, along with much stronger results

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 18/18

The optimality of Horner’s rule for polynomial 0-testing
The nullity relation on a field F :

NF (a0, . . . , an, x) ⇐⇒ a0 + a1x + a2x
2 + · · ·+ anx

n = 0

Theorem
Let F be the field of real or complex numbers.
If n ≥ 1 and a0, . . . , an, x are algebraically independent in F , then:

(1) calls{·,÷}(F , NF ,~a, x) = n

(2) calls{·,÷,=}(F , NF ,~a, x) = n + 1

I The method for constructing the required homomorphsms is
an elaboration of Winograd’s proof of the optimality of
Horner’s rule for poly evaluation

I It is quite different from the method used in arithmetic and
requires a homomorphism which is not an embedding in (2)

I Due to Bürgisser and Lickteig (1992) for algebraic decision
trees, along with much stronger results

Yiannis N. Moschovakis: Intrinsic complexity in arithmetic (and algebra) 18/18

