Intrinsic complexity in arithmetic (and algebra)

Yiannis N. Moschovakis
UCLA and University of Athens

JAF32, Athens, June 26, 2013

Is the Euclidean algorithm optimal from its primitives?

Is the Euclidean algorithm optimal from its primitives?
For $a, b \in \mathbb{N}=\{0,1, \ldots\}, a \geq b \geq 1$,
($\varepsilon) \operatorname{gcd}(a, b)=$ if $(\operatorname{rem}(a, b)=0)$ then b else $\operatorname{gcd}(b, \operatorname{rem}(a, b))$
where $a=\operatorname{iq}(a, b) b+\operatorname{rem}(a, b) \quad(0 \leq \operatorname{rem}(a, b)<b)$

Is the Euclidean algorithm optimal from its primitives?
For $a, b \in \mathbb{N}=\{0,1, \ldots\}, a \geq b \geq 1$,
($\varepsilon) \operatorname{gcd}(a, b)=$ if $(\operatorname{rem}(a, b)=0)$ then b else $\operatorname{gcd}(b, \operatorname{rem}(a, b))$
where $a=\operatorname{iq}(a, b) b+\operatorname{rem}(a, b) \quad(0 \leq \operatorname{rem}(a, b)<b)$
calls $_{\{r e m\}}(\varepsilon, a, b)=$ the number of divisions ε needs to compute $\operatorname{gcd}(a, b)$ $\leq 2 \log (b) \quad(a \geq b \geq 2)$

Is the Euclidean algorithm optimal from its primitives?
For $a, b \in \mathbb{N}=\{0,1, \ldots\}, a \geq b \geq 1$,
($\varepsilon) \quad \operatorname{gcd}(a, b)=$ if $(\operatorname{rem}(a, b)=0)$ then b else $\operatorname{gcd}(b, \operatorname{rem}(a, b))$
where $a=\operatorname{iq}(a, b) b+\operatorname{rem}(a, b) \quad(0 \leq \operatorname{rem}(a, b)<b)$
calls $_{\{r e m\}}(\varepsilon, a, b)=$ the number of divisions ε needs to compute $\operatorname{gcd}(a, b)$

$$
\leq 2 \log (b) \quad(a \geq b \geq 2)
$$

- Is ε optimal for computing $\operatorname{gcd}(a, b)$ from $\{$ rem, $=0\}$?

Is the Euclidean algorithm optimal from its primitives?
For $a, b \in \mathbb{N}=\{0,1, \ldots\}, a \geq b \geq 1$,
($\varepsilon) \quad \operatorname{gcd}(a, b)=$ if $(\operatorname{rem}(a, b)=0)$ then b else $\operatorname{gcd}(b, \operatorname{rem}(a, b))$
where $a=\operatorname{iq}(a, b) b+\operatorname{rem}(a, b) \quad(0 \leq \operatorname{rem}(a, b)<b)$
$\operatorname{calls}_{\{r e m\}}(\varepsilon, a, b)=$ the number of divisions ε needs to compute $\operatorname{gcd}(a, b)$

$$
\leq 2 \log (b) \quad(a \geq b \geq 2)
$$

- Is ε optimal for computing $\operatorname{gcd}(a, b)$ from $\{$ rem, $=0\}$?
- $a \Perp b \Longleftrightarrow \operatorname{gcd}(a, b)=1$

Is ε optimal for deciding coprimeness from $\{$ rem, $=0,=1\}$?

Is the Euclidean algorithm optimal from its primitives?
For $a, b \in \mathbb{N}=\{0,1, \ldots\}, a \geq b \geq 1$,
($\varepsilon) \quad \operatorname{gcd}(a, b)=$ if $(\operatorname{rem}(a, b)=0)$ then b else $\operatorname{gcd}(b, \operatorname{rem}(a, b))$
where $a=\operatorname{iq}(a, b) b+\operatorname{rem}(a, b) \quad(0 \leq \operatorname{rem}(a, b)<b)$
calls $_{\{r e m\}}(\varepsilon, a, b)=$ the number of divisions ε needs to compute $\operatorname{gcd}(a, b)$

$$
\leq 2 \log (b) \quad(a \geq b \geq 2)
$$

- Is ε optimal for computing $\operatorname{gcd}(a, b)$ from $\{$ rem, $=0\}$?
- $a \Perp b \Longleftrightarrow \operatorname{gcd}(a, b)=1$

Is ε optimal for deciding coprimeness from $\left\{\right.$ rem, $\left.=0,={ }_{1}\right\}$?

- And is this true for all algorithms from $\left\{\right.$ rem, $\left.=0,={ }_{1}\right\}$?

Is the Euclidean algorithm optimal from its primitives?
For $a, b \in \mathbb{N}=\{0,1, \ldots\}, a \geq b \geq 1$,
($\varepsilon) \quad \operatorname{gcd}(a, b)=$ if $(\operatorname{rem}(a, b)=0)$ then b else $\operatorname{gcd}(b, \operatorname{rem}(a, b))$
where $a=\operatorname{iq}(a, b) b+\operatorname{rem}(a, b) \quad(0 \leq \operatorname{rem}(a, b)<b)$
calls $_{\{r \mathrm{rem}\}}(\varepsilon, a, b)=$ the number of divisions ε needs to compute $\operatorname{gcd}(a, b)$

$$
\leq 2 \log (b) \quad(a \geq b \geq 2)
$$

- Is ε optimal for computing $\operatorname{gcd}(a, b)$ from $\{$ rem, $=0\}$?
- $a \Perp b \Longleftrightarrow \operatorname{gcd}(a, b)=1$

Is ε optimal for deciding coprimeness from $\left\{\right.$ rem, $\left.={ }_{0},={ }_{1}\right\}$?

- And is this true for all algorithms from $\left\{\right.$ rem, $\left.=0,==_{1}\right\}$?

Conjecture: For every algorithm α which decides coprimeness from $\{$ rem, $=0,=1\}$
$(\exists r>0)$ (for infinitely many $a \geq b, \quad$ calls $_{\{r e m\}}(\alpha, a, b) \geq r \log (a)$

The value complexities I

- A classical method for establishing lower bounds that restrict all algorithms assuming practically nothing about "what algorithms are":

The value complexities I

- A classical method for establishing lower bounds that restrict all algorithms assuming practically nothing about "what algorithms are":

Horner's rule: For any field F and $n \geq 1$, the value of a polynomial of degree n can be computed using no more than n multiplications and n additions in F :

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=a_{0}+x\left(a_{1}+a_{2} x+\cdots+a_{n} x^{n-1}\right)
$$

The value complexities I

- A classical method for establishing lower bounds that restrict all algorithms assuming practically nothing about "what algorithms are":

Horner's rule: For any field F and $n \geq 1$, the value of a polynomial of degree n can be computed using no more than n multiplications and n additions in F :

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=a_{0}+x\left(a_{1}+a_{2} x+\cdots+a_{n} x^{n-1}\right)
$$

Theorem (Pan 1966, (Winograd 1967, 1970))

Every algorithm from the complex field operations requires at least n multiplications/divisions and at least n additions/subtractions to compute $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ when \vec{a}, x are algebraically independent complex numbers (the generic case)

The value complexities I

- A classical method for establishing lower bounds that restrict all algorithms assuming practically nothing about "what algorithms are":

Horner's rule: For any field F and $n \geq 1$, the value of a polynomial of degree n can be computed using no more than n multiplications and n additions in F :

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=a_{0}+x\left(a_{1}+a_{2} x+\cdots+a_{n} x^{n-1}\right)
$$

Theorem (Pan 1966, (Winograd 1967, 1970))

Every algorithm from the complex field operations requires at least n multiplications/divisions and at least n additions/subtractions to compute $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ when \vec{a}, x are algebraically independent complex numbers (the generic case)
... because it takes that many applications of the field operations to construct the value $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ from a_{0}, \ldots, a_{n}, x

The value complexities II

Theorem (van den Dries)

If an algorithm α computes $\operatorname{gcd}(x, y)$ from $0,1,+,-$, iq, rem $, \cdot,<$ and
calls $(\alpha, x, y)=$ the number of calls to the primitives
α makes to compute $\operatorname{gcd}(x, y)$,
then for all $a>b$ such that $a^{2}=2 b^{2}+1$ (Pell pairs),

$$
\operatorname{calls}(\alpha, a+1, b) \geq \frac{1}{4} \sqrt{\log \log b}
$$

The value complexities II

Theorem (van den Dries)

If an algorithm α computes $\operatorname{gcd}(x, y)$ from $0,1,+,-$, iq , rem $, \cdot,<$ and calls $(\alpha, x, y)=$ the number of calls to the primitives

$$
\alpha \text { makes to compute } \operatorname{gcd}(x, y) \text {, }
$$

then for all $a>b$ such that $a^{2}=2 b^{2}+1$ (Pell pairs),

$$
\operatorname{calls}(\alpha, a+1, b) \geq \frac{1}{4} \sqrt{\log \log b}
$$

... because it takes at least that many applications of the primitives to construct the value $\operatorname{gcd}(a+1, b)$ when (a, b) is a Pell pair

The value complexities II

Theorem (van den Dries)

If an algorithm α computes $\operatorname{gcd}(x, y)$ from $0,1,+,-$, iq, rem $, \cdot,<$ and
calls $(\alpha, x, y)=$ the number of calls to the primitives
α makes to compute $\operatorname{gcd}(x, y)$,
then for all $a>b$ such that $a^{2}=2 b^{2}+1$ (Pell pairs),

$$
\operatorname{calls}(\alpha, a+1, b) \geq \frac{1}{4} \sqrt{\log \log b}
$$

... because it takes at least that many applications of the primitives to construct the value $\operatorname{gcd}(a+1, b)$ when (a, b) is a Pell pair

- This method cannot yield lower bounds for decision problems (because their output (tt or ff) is available with no computation)

The value complexities II

Theorem (van den Dries)

If an algorithm α computes $\operatorname{gcd}(x, y)$ from $0,1,+,-$, iq, rem $, \cdot,<$ and
calls $(\alpha, x, y)=$ the number of calls to the primitives

$$
\alpha \text { makes to compute } \operatorname{gcd}(x, y) \text {, }
$$

then for all $a>b$ such that $a^{2}=2 b^{2}+1$ (Pell pairs),

$$
\operatorname{calls}(\alpha, a+1, b) \geq \frac{1}{4} \sqrt{\log \log b}
$$

... because it takes at least that many applications of the primitives to construct the value $\operatorname{gcd}(a+1, b)$ when (a, b) is a Pell pair

- This method cannot yield lower bounds for decision problems (because their output (tt or ff) is available with no computation)
- and it is open whether algorithms that decide coprimeness from these primitives (which include multiplication) must execute $O(\sqrt{\log \log \max (x, y)})$ operations on an infinite set of inputs

(Partial) structures

- A (partial) structure is a tuple $\mathbf{A}=\left(A, \Phi^{\mathbf{A}}\right)$ where Φ is a set of function and relation symbols and $\Phi^{\mathbf{A}}=\left\{\phi^{\mathbf{A}}\right\}_{\phi \in \Phi}$, where with $s_{\phi} \in\{\mathrm{a}$, boole $\}, A_{\mathrm{a}}=A, A_{\mathrm{boole}}=\{\mathrm{t}, \mathrm{ff}\}$,

$$
\phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup A_{s_{\phi}} \text { i.e., } \phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup A \text { or } \phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup\{\mathrm{t}, \mathrm{ff}\}
$$

(Partial) structures

- A (partial) structure is a tuple $\mathbf{A}=\left(A, \Phi^{\mathbf{A}}\right)$ where Φ is a set of function and relation symbols and $\Phi^{\mathbf{A}}=\left\{\phi^{\mathbf{A}}\right\}_{\phi \in \Phi}$, where with $s_{\phi} \in\{\mathrm{a}$, boole $\}, A_{\mathrm{a}}=A, A_{\mathrm{boole}}=\{\mathrm{t}, \mathrm{ff}\}$,

$$
\phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup A_{s_{\phi}} \text { i.e., } \phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup A \text { or } \phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup\{\mathrm{t}, \mathrm{ff}\}
$$

- $\mathbf{N}=(\mathbb{N}, 0,1,+, \cdot,=)$, the standard structure of arithmetic

(Partial) structures

- A (partial) structure is a tuple $\mathbf{A}=\left(A, \Phi^{\mathbf{A}}\right)$ where Φ is a set of function and relation symbols and $\Phi^{\mathbf{A}}=\left\{\phi^{\mathbf{A}}\right\}_{\phi \in \Phi}$, where with $s_{\phi} \in\{\mathrm{a}$, boole $\}, A_{\mathrm{a}}=A, A_{\mathrm{boole}}=\{\mathrm{t}, \mathrm{ff}\}$,

$$
\phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup A_{s_{\phi}} \text { i.e., } \phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup A \text { or } \phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup\{\mathrm{t}, \mathrm{ff}\}
$$

- $\mathbf{N}=(\mathbb{N}, 0,1,+, \cdot,=)$, the standard structure of arithmetic
- $\mathbf{N}_{\varepsilon}=\left(\mathbb{N}\right.$, rem $\left.,={ }_{0},={ }_{1}\right)$, the Euclidean structure

(Partial) structures

- A (partial) structure is a tuple $\mathbf{A}=\left(A, \Phi^{\mathbf{A}}\right)$ where Φ is a set of function and relation symbols and $\Phi^{\mathbf{A}}=\left\{\phi^{\mathbf{A}}\right\}_{\phi \in \Phi}$, where with $s_{\phi} \in\{\mathrm{a}$, boole $\}, A_{\mathrm{a}}=A, A_{\mathrm{boole}}=\{\mathrm{t}, \mathrm{ff}\}$,

$$
\phi^{\mathbf{A}: A^{n_{\phi}} \rightharpoonup A_{s_{\phi}}} \text { i.e., } \phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup A \text { or } \phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup\{\mathrm{t}, \mathrm{ff}\}
$$

- $\mathbf{N}=(\mathbb{N}, 0,1,+, \cdot,=)$, the standard structure of arithmetic
- $\mathbf{N}_{\varepsilon}=\left(\mathbb{N}\right.$, rem, $\left.=0,={ }_{1}\right)$, the Euclidean structure
- $\mathbf{N}_{\varepsilon} \upharpoonright U=\left(U\right.$, rem $\left.\upharpoonright U,={ }_{0} \upharpoonright U,={ }_{1} \upharpoonright U\right)$ where $U \subseteq \mathbb{N}$ and

$$
(f \upharpoonright U)(x, y)=w \Longleftrightarrow \vec{x} \in U^{n}, w \in U_{s} \& f(\vec{x})=w
$$

(Partial) structures

- A (partial) structure is a tuple $\mathbf{A}=\left(A, \Phi^{\mathbf{A}}\right)$ where Φ is a set of function and relation symbols and $\Phi^{\mathbf{A}}=\left\{\phi^{\mathbf{A}}\right\}_{\phi \in \Phi}$, where with $s_{\phi} \in\{\mathrm{a}$, boole $\}, A_{\mathrm{a}}=A, A_{\mathrm{boole}}=\{\mathrm{t}, \mathrm{ff}\}$,

$$
\phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup A_{s_{\phi}} \text { i.e., } \phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup A \text { or } \phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup\{\mathrm{t}, \mathrm{ff}\}
$$

- $\mathbf{N}=(\mathbb{N}, 0,1,+, \cdot,=)$, the standard structure of arithmetic
- $\mathbf{N}_{\varepsilon}=\left(\mathbb{N}\right.$, rem $\left.,={ }_{0},={ }_{1}\right)$, the Euclidean structure
- $\mathbf{N}_{\varepsilon} \upharpoonright U=\left(U\right.$, rem $\left.\upharpoonright U,={ }_{0} \upharpoonright U,={ }_{1} \upharpoonright U\right)$ where $U \subseteq \mathbb{N}$ and

$$
(f \upharpoonright U)(x, y)=w \Longleftrightarrow \vec{x} \in U^{n}, w \in U_{s} \& f(\vec{x})=w
$$

- The (equational) diagram of a Φ-structure is the set of its basic equations,

$$
\operatorname{eqdiag}(\mathbf{A})=\left\{(\phi, \vec{x}, w): \vec{x} \in A^{n_{\phi}}, w \in A_{s_{\phi}}, \text { and } \phi^{\mathbf{A}}(\vec{x})=w\right\}
$$

- We may assume that \mathbf{A} is completely determined by eqdiag(\mathbf{A})

Sample result: the intrinsic calls complexity

Sample result: the intrinsic calls complexity

With each structure $\mathbf{A}=(A, \boldsymbol{\Phi})$, each $\Phi_{0} \subseteq \Phi$ and each (partial) function or relation $f: A^{n} \rightharpoonup A_{s}$ we will associate a partial function

$$
\vec{x} \mapsto \operatorname{call}_{\Phi_{\Phi_{0}}}(\mathbf{A}, f, \vec{x}) \in \mathbb{N} \quad(f(\vec{x}) \downarrow)
$$

such that:

Sample result: the intrinsic calls complexity

With each structure $\mathbf{A}=(A, \boldsymbol{\Phi})$, each $\Phi_{0} \subseteq \Phi$ and each (partial) function or relation $f: A^{n} \rightharpoonup A_{s}$ we will associate a partial function

$$
\vec{x} \mapsto \text { calls }_{\Phi_{0}}(\mathbf{A}, f, \vec{x}) \in \mathbb{N} \quad(f(\vec{x}) \downarrow)
$$

such that:
(\star) If α is any algorithm from $\boldsymbol{\Phi}$ which computes f, then

$$
\operatorname{calls}_{\Phi_{0}}(\mathbf{A}, f, \vec{x}) \leq \operatorname{calls}_{\Phi_{0}}(\alpha, \vec{x}) \quad(f(\vec{x}) \downarrow)
$$

Sample result: the intrinsic calls complexity

With each structure $\mathbf{A}=(A, \Phi)$, each $\Phi_{0} \subseteq \Phi$ and each (partial) function or relation $f: A^{n} \rightharpoonup A_{s}$ we will associate a partial function

$$
\vec{x} \mapsto \text { calls }_{\Phi_{0}}(\mathbf{A}, f, \vec{x}) \in \mathbb{N} \quad(f(\vec{x}) \downarrow)
$$

such that:
(\star) If α is any algorithm from $\boldsymbol{\Phi}$ which computes f, then

$$
\operatorname{call}_{\Phi_{\Phi_{0}}}(\mathbf{A}, f, \vec{x}) \leq \operatorname{calls}_{\Phi_{0}}(\alpha, \vec{x}) \quad(f(\vec{x}) \downarrow)
$$

- (\star) is not trivial: in some important examples in arithmetic and algebra it yields the best known lower bound results

Sample result: the intrinsic calls complexity

With each structure $\mathbf{A}=(A, \Phi)$, each $\Phi_{0} \subseteq \Phi$ and each (partial) function or relation $f: A^{n} \rightharpoonup A_{s}$ we will associate a partial function

$$
\vec{x} \mapsto \text { calls }_{\Phi_{0}}(\mathbf{A}, f, \vec{x}) \in \mathbb{N} \quad(f(\vec{x}) \downarrow)
$$

such that:
(\star) If α is any algorithm from $\boldsymbol{\Phi}$ which computes f, then

$$
\operatorname{calls}_{\Phi_{0}}(\mathbf{A}, f, \vec{x}) \leq \operatorname{call}_{\Phi_{0}}(\alpha, \vec{x}) \quad(f(\vec{x}) \downarrow)
$$

- (\star) is not trivial: in some important examples in arithmetic and algebra it yields the best known lower bound results
- (\star) is a theorem for concrete algorithms specified by the usual computation models;

Sample result: the intrinsic calls complexity

With each structure $\mathbf{A}=(A, \Phi)$, each $\Phi_{0} \subseteq \Phi$ and each (partial) function or relation $f: A^{n} \rightharpoonup A_{s}$ we will associate a partial function

$$
\vec{x} \mapsto \operatorname{call}_{\Phi_{\Phi_{0}}}(\mathbf{A}, f, \vec{x}) \in \mathbb{N} \quad(f(\vec{x}) \downarrow)
$$

such that:
(\star) If α is any algorithm from $\boldsymbol{\Phi}$ which computes f, then

$$
\operatorname{calls}_{\Phi_{0}}(\mathbf{A}, f, \vec{x}) \leq \operatorname{call}_{\Phi_{0}}(\alpha, \vec{x}) \quad(f(\vec{x}) \downarrow)
$$

- (\star) is not trivial: in some important examples in arithmetic and algebra it yields the best known lower bound results
- (\star) is a theorem for concrete algorithms specified by the usual computation models; it is plausible for all algorithms from $\boldsymbol{\Phi}$

Sample result: the intrinsic calls complexity

With each structure $\mathbf{A}=(A, \Phi)$, each $\Phi_{0} \subseteq \Phi$ and each (partial) function or relation $f: A^{n} \rightharpoonup A_{s}$ we will associate a partial function

$$
\vec{x} \mapsto \operatorname{call}_{\Phi_{\Phi_{0}}}(\mathbf{A}, f, \vec{x}) \in \mathbb{N} \quad(f(\vec{x}) \downarrow)
$$

such that:
(\star) If α is any algorithm from $\boldsymbol{\Phi}$ which computes f, then

$$
\operatorname{calls}_{\Phi_{0}}(\mathbf{A}, f, \vec{x}) \leq \operatorname{call}_{\Phi_{\Phi_{0}}}(\alpha, \vec{x}) \quad(f(\vec{x}) \downarrow)
$$

- (\star) is not trivial: in some important examples in arithmetic and algebra it yields the best known lower bound results
- (\star) is a theorem for concrete algorithms specified by the usual computation models; it is plausible for all algorithms from $\boldsymbol{\Phi}$
- The results are about several natural complexity measures on algorithms from primitives, not only "the number of calls to Φ_{0} "

Sample result: the intrinsic calls complexity

With each structure $\mathbf{A}=(A, \boldsymbol{\Phi})$, each $\Phi_{0} \subseteq \Phi$ and each (partial) function or relation $f: A^{n} \rightharpoonup A_{s}$ we will associate a partial function

$$
\vec{x} \mapsto \operatorname{call}_{\Phi_{\Phi_{0}}}(\mathbf{A}, f, \vec{x}) \in \mathbb{N} \quad(f(\vec{x}) \downarrow)
$$

such that:
(\star) If α is any algorithm from $\boldsymbol{\Phi}$ which computes f, then

$$
\operatorname{calls}_{\Phi_{0}}(\mathbf{A}, f, \vec{x}) \leq \operatorname{call}_{\Phi_{\Phi_{0}}}(\alpha, \vec{x}) \quad(f(\vec{x}) \downarrow)
$$

- (\star) is not trivial: in some important examples in arithmetic and algebra it yields the best known lower bound results
- (\star) is a theorem for concrete algorithms specified by the usual computation models; it is plausible for all algorithms from $\boldsymbol{\Phi}$
- The results are about several natural complexity measures on algorithms from primitives, not only "the number of calls to Φ_{0} "
- The methods are from abstract model theory

Slogan: Absolute lower bound results are the undecidability facts about decidable problems

Slogan: Absolute lower bound results are the undecidability facts about decidable problems
(1) Preliminaries
(2) Uniform processes
(3) Comprimeness in \mathbb{N}
(4) Polynomial 0-testing

Slogan: Absolute lower bound results
are the undecidability facts about decidable problems
(1) Preliminaries
(2) Uniform processes
(3) Comprimeness in \mathbb{N}
(4) Polynomial 0-testing

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004)
Arithmetic complexity (with van Den Dries, 2009)
Recursion and complexity (notes) www.math.ucla.edu/~ynm (currently under repair)

Slogan: Absolute lower bound results
are the undecidability facts about decidable problems
(1) Preliminaries
(2) Uniform processes
(3) Comprimeness in \mathbb{N}
(4) Polynomial 0-testing

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004)
Arithmetic complexity (with van Den Dries, 2009)
Recursion and complexity (notes) www.math.ucla.edu/~ynm (currently under repair)
Y. Mansour, B. Schieber, and P. Tiwari (1991)

A lower bound for integer greatest common divisor computations
Lower bounds for computations with the floor operation
J. Meidânis (1991): Lower bounds for arithmetic problems
P. Bürgisser and T. Lickteig (1992)

Verification complexity of linear prime ideals
P. Bürgisser, T. Lickteig, and M. Shub (1992),

Test complexity of generic polynomials

Substructures and homomorphisms

Substructures and homomorphisms

- Substructures (pieces):

$$
\begin{aligned}
\mathbf{U} \subseteq_{p} \mathbf{A}=(A, \boldsymbol{\Phi}) & \Longleftrightarrow U \subseteq A \& \operatorname{eqdiag}(\mathbf{U}) \subseteq \operatorname{eqdiag}(\mathbf{A}) \\
& \Longleftrightarrow U \subseteq A \&(\forall \phi \in \Phi)\left[\phi^{\mathbf{U}} \sqsubseteq \phi^{\mathbf{A}}\right]
\end{aligned}
$$

Substructures may be finite and not closed under $\boldsymbol{\Phi}$

Substructures and homomorphisms

- Substructures (pieces):

$$
\begin{aligned}
\mathbf{U} \subseteq_{p} \mathbf{A}=(A, \boldsymbol{\Phi}) & \Longleftrightarrow U \subseteq A \& \operatorname{eqdiag}(\mathbf{U}) \subseteq \operatorname{eqdiag}(\mathbf{A}) \\
& \Longleftrightarrow U \subseteq A \&(\forall \phi \in \Phi)\left[\phi^{\mathbf{U}} \sqsubseteq \phi^{\mathbf{A}}\right]
\end{aligned}
$$

Substructures may be finite and not closed under $\boldsymbol{\Phi}$

- A homomorphism $\pi: \mathbf{U} \longmapsto \mathbf{V}$ is any $\pi: U \rightarrow V$ such that for all $\phi \in \Phi, x_{1}, \ldots, x_{n} \in U, w \in U_{s}$, (with $\left.\pi(\mathrm{tt})=\mathrm{t}, \pi(\mathrm{ff})=\mathrm{ff}\right)$

$$
\phi^{\mathbf{U}}\left(x_{1}, \ldots, x_{n}\right)=w \Longrightarrow \phi^{\mathbf{v}}\left(\pi x_{1}, \ldots, \pi x_{n}\right)=\pi w
$$

Substructures and homomorphisms

- Substructures (pieces):

$$
\begin{aligned}
\mathbf{U} \subseteq_{p} \mathbf{A}=(A, \boldsymbol{\Phi}) & \Longleftrightarrow U \subseteq A \& \operatorname{eqdiag}(\mathbf{U}) \subseteq \operatorname{eqdiag}(\mathbf{A}) \\
& \Longleftrightarrow U \subseteq A \&(\forall \phi \in \Phi)\left[\phi^{\mathbf{U}} \sqsubseteq \phi^{\mathbf{A}}\right]
\end{aligned}
$$

Substructures may be finite and not closed under $\boldsymbol{\Phi}$

- A homomorphism $\pi: \mathbf{U} \longmapsto \mathbf{V}$ is any $\pi: U \rightarrow V$ such that for all $\phi \in \Phi, x_{1}, \ldots, x_{n} \in U, w \in U_{s}$, (with $\left.\pi(\mathrm{tt})=\mathrm{t}, \pi(\mathrm{ff})=\mathrm{ff}\right)$

$$
\phi^{\mathbf{U}}\left(x_{1}, \ldots, x_{n}\right)=w \Longrightarrow \phi^{\mathbf{v}}\left(\pi x_{1}, \ldots, \pi x_{n}\right)=\pi w
$$

- May have $x \neq y, \pi(x)=\pi(y)$, unless $(=, x, y$, ff $) \in \operatorname{eqdiag}(\mathbf{U})$

Substructures and homomorphisms

- Substructures (pieces):

$$
\begin{aligned}
\mathbf{U} \subseteq_{p} \mathbf{A}=(A, \boldsymbol{\Phi}) & \Longleftrightarrow U \subseteq A \& \text { eqdiag }(\mathbf{U}) \subseteq \operatorname{eqdiag}(\mathbf{A}) \\
& \Longleftrightarrow U \subseteq A \&(\forall \phi \in \Phi)\left[\phi^{\mathbf{U}} \sqsubseteq \phi^{\mathbf{A}}\right]
\end{aligned}
$$

Substructures may be finite and not closed under $\boldsymbol{\Phi}$

- A homomorphism $\pi: \mathbf{U} \longmapsto \mathbf{V}$ is any $\pi: U \rightarrow V$ such that for all $\phi \in \Phi, x_{1}, \ldots, x_{n} \in U, w \in U_{s}$, (with $\left.\pi(\mathrm{tt})=\mathrm{t}, \pi(\mathrm{ff})=\mathrm{ff}\right)$

$$
\phi^{\mathbf{U}}\left(x_{1}, \ldots, x_{n}\right)=w \Longrightarrow \phi^{\mathbf{v}}\left(\pi x_{1}, \ldots, \pi x_{n}\right)=\pi w
$$

- May have $x \neq y, \pi(x)=\pi(y)$, unless $(=, x, y$, ff $) \in \operatorname{eqdiag}(\mathbf{U})$
- π is an embedding if it is injective (in which case it preserves \neq)

Substructures and homomorphisms

- Substructures (pieces):

$$
\begin{aligned}
\mathbf{U} \subseteq_{p} \mathbf{A}=(A, \boldsymbol{\Phi}) & \Longleftrightarrow U \subseteq A \& \text { eqdiag }(\mathbf{U}) \subseteq \operatorname{eqdiag}(\mathbf{A}) \\
& \Longleftrightarrow U \subseteq A \&(\forall \phi \in \Phi)\left[\phi^{\mathbf{U}} \sqsubseteq \phi^{\mathbf{A}}\right]
\end{aligned}
$$

Substructures may be finite and not closed under $\boldsymbol{\Phi}$

- A homomorphism $\pi: \mathbf{U} \longmapsto \mathbf{V}$ is any $\pi: U \rightarrow V$ such that for all $\phi \in \Phi, x_{1}, \ldots, x_{n} \in U, w \in U_{s}$, (with $\left.\pi(\mathrm{tt})=\mathrm{t}, \pi(\mathrm{ff})=\mathrm{ff}\right)$

$$
\phi^{\mathbf{U}}\left(x_{1}, \ldots, x_{n}\right)=w \Longrightarrow \phi^{\mathbf{v}}\left(\pi x_{1}, \ldots, \pi x_{n}\right)=\pi w
$$

- May have $x \neq y, \pi(x)=\pi(y)$, unless $(=, x, y$, ff $) \in \operatorname{eqdiag}(\mathbf{U})$
- π is an embedding if it is injective (in which case it preserves \neq)
- We use finite substructures $\mathbf{U} \subseteq_{p} \mathbf{A}$ to represent calls to the primitives executed during a computation in \mathbf{A}

Algorithms from primitives - the basic intuition

An n-ary algorithm α of $\mathbf{A}=(A, \boldsymbol{\Phi})$ (or from $\boldsymbol{\Phi}$) "computes" some n-ary partial function or relation

$$
\bar{\alpha}=\bar{\alpha}^{\mathbf{A}}: A^{n} \rightharpoonup A_{s}
$$

using the primitives in $\boldsymbol{\Phi}$ as oracles and nothing else about \mathbf{A}

Algorithms from primitives - the basic intuition

An n-ary algorithm α of $\mathbf{A}=(A, \boldsymbol{\Phi})$ (or from $\boldsymbol{\Phi}$) "computes" some n-ary partial function or relation

$$
\bar{\alpha}=\bar{\alpha}^{\mathbf{A}}: A^{n} \rightharpoonup A_{s}
$$

using the primitives in $\boldsymbol{\Phi}$ as oracles and nothing else about \mathbf{A}
We understand this to mean that in the course of a "computation" of $\bar{\alpha}(\vec{x})$, the algorithm may request from the oracle for any $\phi^{\mathbf{A}}$ any particular value $\phi^{\mathbf{A}}(\vec{u})$, for arguments \vec{u} which it has already computed from \vec{x}, and that if the oracles cooperate, then "the computation" of $\bar{\alpha}(\vec{x})$ is completed in a finite number of "steps"

Algorithms from primitives - the basic intuition

An n-ary algorithm α of $\mathbf{A}=(A, \boldsymbol{\Phi})$ (or from $\boldsymbol{\Phi}$) "computes" some n-ary partial function or relation

$$
\bar{\alpha}=\bar{\alpha}^{\mathbf{A}}: A^{n} \rightharpoonup A_{s}
$$

using the primitives in $\boldsymbol{\Phi}$ as oracles and nothing else about \mathbf{A}
We understand this to mean that in the course of a "computation" of $\bar{\alpha}(\vec{x})$, the algorithm may request from the oracle for any $\phi^{\mathbf{A}}$ any particular value $\phi^{\mathbf{A}}(\vec{u})$, for arguments \vec{u} which it has already computed from \vec{x}, and that if the oracles cooperate, then "the computation" of $\bar{\alpha}(\vec{x})$ is completed in a finite number of "steps"

- The notion of a uniform process attempts to capture minimally (in the style of abstract model theory) these aspects of algorithms from primitives

Algorithms from primitives - the basic intuition

An n-ary algorithm α of $\mathbf{A}=(A, \boldsymbol{\Phi})$ (or from $\boldsymbol{\Phi}$) "computes" some n-ary partial function or relation

$$
\bar{\alpha}=\bar{\alpha}^{\mathbf{A}}: A^{n} \rightharpoonup A_{s}
$$

using the primitives in $\boldsymbol{\Phi}$ as oracles and nothing else about \mathbf{A}
We understand this to mean that in the course of a "computation" of $\bar{\alpha}(\vec{x})$, the algorithm may request from the oracle for any $\phi^{\mathbf{A}}$ any particular value $\phi^{\mathbf{A}}(\vec{u})$, for arguments \vec{u} which it has already computed from \vec{x}, and that if the oracles cooperate, then "the computation" of $\bar{\alpha}(\vec{x})$ is completed in a finite number of "steps"

- The notion of a uniform process attempts to capture minimally (in the style of abstract model theory) these aspects of algorithms from primitives
- It does not capture their effectiveness, but their uniformity -that an algorithm applies "the same procedure" to all arguments in its domain

Uniform processes: I The Locality Axiom

A uniform process α of arity n and sort s of a structure $\mathbf{A}=\left(A, \Phi^{\mathbf{A}}\right)$ assigns to each substructure $\mathbf{U} \subseteq{ }_{p} \mathbf{A}$ an n-ary partial function

$$
\bar{\alpha}^{\mathbf{U}}: U^{n} \rightharpoonup U_{s}
$$

It computes the partial function or relation $\bar{\alpha}^{\mathbf{A}}: A^{n} \rightharpoonup A_{s}$

Uniform processes: I The Locality Axiom

A uniform process α of arity n and sort s of a structure $\mathbf{A}=\left(A, \Phi^{\mathbf{A}}\right)$ assigns to each substructure $\mathbf{U} \subseteq_{p} \mathbf{A}$ an n-ary partial function

$$
\bar{\alpha}^{U}: U^{n} \rightharpoonup U_{s}
$$

It computes the partial function or relation $\bar{\alpha}^{\mathbf{A}}: A^{n} \rightharpoonup A_{s}$

- For an algorithm α, intuitively, $\bar{\alpha} \mathbf{U}$ is the restriction to U of the partial function computed by α when the oracles respond only to questions with answers in eqdiag(U)

Uniform processes: I The Locality Axiom

A uniform process α of arity n and sort s of a structure
$\mathbf{A}=\left(A, \Phi^{\mathbf{A}}\right)$ assigns to each substructure $\mathbf{U} \subseteq_{p} \mathbf{A}$ an n-ary partial function

$$
\bar{\alpha}^{\mathbf{U}}: U^{n} \rightharpoonup U_{s}
$$

It computes the partial function or relation $\bar{\alpha}^{\mathbf{A}}: A^{n} \rightharpoonup A_{s}$

- For an algorithm α, intuitively, $\bar{\alpha} \mathbf{U}$ is the restriction to U of the partial function computed by α when the oracles respond only to questions with answers in eqdiag(U)

We write

$$
\begin{aligned}
\mathbf{U} \vdash \alpha(\vec{x})=w & \Longleftrightarrow \bar{\alpha}^{\mathbf{U}}(\vec{x})=w, \\
\mathbf{U} \vdash \alpha(\vec{x}) \downarrow & \Longleftrightarrow(\exists w)[\bar{\alpha} \mathbf{U}(\vec{x})=w]
\end{aligned}
$$

Uniform processes: II The Homomorphism Axiom

If α is an n-ary uniform process of $\mathbf{A}, \mathbf{U}, \mathbf{V} \subseteq_{p} \mathbf{A}$, and $\pi: \mathbf{U} \rightarrow \mathbf{V}$ is a homomorphism, then

$$
\mathbf{U} \vdash \alpha(\vec{x})=w \Longrightarrow \mathbf{V} \vdash \alpha(\pi \vec{x})=\pi w \quad\left(x_{1}, \ldots, x_{n} \in U, w \in U_{s}\right)
$$

In particular, if $\mathbf{U} \subseteq{ }_{p} \mathbf{A}$, then $\bar{\alpha}^{\mathbf{U}} \sqsubseteq \bar{\alpha}^{\mathbf{A}}$

Uniform processes: II The Homomorphism Axiom

If α is an n-ary uniform process of $\mathbf{A}, \mathbf{U}, \mathbf{V} \subseteq_{p} \mathbf{A}$, and $\pi: \mathbf{U} \rightarrow \mathbf{V}$ is a homomorphism, then

$$
\mathbf{U} \vdash \alpha(\vec{x})=w \Longrightarrow \mathbf{V} \vdash \alpha(\pi \vec{x})=\pi w \quad\left(x_{1}, \ldots, x_{n} \in U, w \in U_{s}\right)
$$

In particular, if $\mathbf{U} \subseteq{ }_{p} \mathbf{A}$, then $\bar{\alpha}^{\mathbf{U}} \sqsubseteq \bar{\alpha}^{\mathbf{A}}$

- For algorithms: when asked for $\phi^{\mathbf{U}}(\vec{x})$, the oracle for ϕ may consistently provide $\phi^{\mathbf{V}}(\pi \vec{x})$, if π is a homomorphism

Uniform processes: II The Homomorphism Axiom

If α is an n-ary uniform process of $\mathbf{A}, \mathbf{U}, \mathbf{V} \subseteq_{p} \mathbf{A}$, and $\pi: \mathbf{U} \rightarrow \mathbf{V}$ is a homomorphism, then

$$
\mathbf{U} \vdash \alpha(\vec{x})=w \Longrightarrow \mathbf{V} \vdash \alpha(\pi \vec{x})=\pi w \quad\left(x_{1}, \ldots, x_{n} \in U, w \in U_{s}\right)
$$

In particular, if $\mathbf{U} \subseteq{ }_{p} \mathbf{A}$, then $\bar{\alpha}^{\mathbf{U}} \sqsubseteq \bar{\alpha}^{\mathbf{A}}$

- For algorithms: when asked for $\phi^{\mathbf{U}}(\vec{x})$, the oracle for ϕ may consistently provide $\phi^{\mathbf{V}}(\pi \vec{x})$, if π is a homomorphism
- This is obvious for the identity embedding $I: \mathbf{U} \longmapsto \mathbf{A}$, but it is a strong restriction for algorithms from rich primitives (stacks, higher type constructs, etc.)

Uniform processes: II The Homomorphism Axiom

If α is an n-ary uniform process of $\mathbf{A}, \mathbf{U}, \mathbf{V} \subseteq_{p} \mathbf{A}$, and $\pi: \mathbf{U} \rightarrow \mathbf{V}$ is a homomorphism, then

$$
\mathbf{U} \vdash \alpha(\vec{x})=w \Longrightarrow \mathbf{V} \vdash \alpha(\pi \vec{x})=\pi w \quad\left(x_{1}, \ldots, x_{n} \in U, w \in U_{s}\right)
$$

In particular, if $\mathbf{U} \subseteq{ }_{p} \mathbf{A}$, then $\bar{\alpha}^{\mathbf{U}} \sqsubseteq \bar{\alpha}^{\mathbf{A}}$

- For algorithms: when asked for $\phi^{\mathbf{U}}(\vec{x})$, the oracle for ϕ may consistently provide $\phi^{\mathbf{V}}(\pi \vec{x})$, if π is a homomorphism
- This is obvious for the identity embedding $I: \mathbf{U} \longmapsto \mathbf{A}$, but it is a strong restriction for algorithms from rich primitives (stacks, higher type constructs, etc.)
- It can be verified for the standard computation models (deterministic and non-deterministic) provided all their primitives are included in $\boldsymbol{\Phi}$

Uniform processes: III The Finiteness Axiom

If α is an n-ary uniform process of \mathbf{A}, then
$\mathbf{A} \vdash \alpha(\vec{x})=w$
\Longrightarrow there is a finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ generated by \vec{x} such that $\mathbf{U} \vdash \alpha(\vec{x})=w$

Uniform processes: III The Finiteness Axiom

If α is an n-ary uniform process of \mathbf{A}, then
$\mathbf{A} \vdash \alpha(\vec{x})=w$
\Longrightarrow there is a finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ generated by \vec{x} such that $\mathbf{U} \vdash \alpha(\vec{x})=w$

- For every call $\phi(\vec{u})$ to the primitives, the algorithm must construct the arguments \vec{u}, and so the entire computation takes place within a finite substructure generated by the input \vec{x}

Uniform processes: III The Finiteness Axiom

If α is an n-ary uniform process of \mathbf{A}, then
$\mathbf{A} \vdash \alpha(\vec{x})=w$
\Longrightarrow there is a finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ generated by \vec{x} such that $\mathbf{U} \vdash \alpha(\vec{x})=w$

- For every call $\phi(\vec{u})$ to the primitives, the algorithm must construct the arguments \vec{u}, and so the entire computation takes place within a finite substructure generated by the input \vec{x} We write
$\mathbf{U} \vdash_{c} \alpha(\vec{x})=w \Longleftrightarrow \mathbf{U}$ is finite, generated by \vec{x} and $\mathbf{U} \vdash \alpha(\vec{x})=w$, $\mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow \Longleftrightarrow(\exists w)\left[\mathbf{U} \vdash_{c} \alpha(\vec{x})=w\right]$
and we think of (\mathbf{U}, \vec{x}, w) as a computation of α on the input \vec{x}

Uniform processes, summary

Uniform processes, summary

- I The Locality Axiom:

A uniform process α of arity n and sort s of a structure $\mathbf{A}=\left(A, \Phi^{\mathbf{A}}\right)$ assigns to each substructure $\mathbf{U} \subseteq_{p} \mathbf{A}$ an n-ary partial function

$$
\bar{\alpha}^{U}: U^{n} \rightharpoonup U_{s}
$$

It computes the partial function or relation $\bar{\alpha}^{\mathbf{A}}: A^{n} \rightharpoonup A_{s}$

$$
\mathbf{U} \vdash \alpha(\vec{x}) \downarrow \Longleftrightarrow \alpha^{\mathbf{U}}(\vec{x}) \downarrow
$$

Uniform processes, summary

- I The Locality Axiom:

A uniform process α of arity n and sort s of a structure $\mathbf{A}=\left(A, \Phi^{\mathbf{A}}\right)$ assigns to each substructure $\mathbf{U} \subseteq_{p} \mathbf{A}$ an n-ary partial function

$$
\bar{\alpha}^{\mathbf{U}}: U^{n} \rightharpoonup U_{s}
$$

It computes the partial function or relation $\bar{\alpha}^{\mathbf{A}}: A^{n} \rightharpoonup A_{s}$

$$
\mathbf{U} \vdash \alpha(\vec{x}) \downarrow \Longleftrightarrow \alpha^{\mathbf{U}}(\vec{x}) \downarrow
$$

- II The Homomorphism Axiom:

If $\mathbf{U}, \mathbf{V} \subseteq{ }_{p} \mathbf{A}$ and $\pi: \mathbf{U} \rightarrow \mathbf{V}$ is a homomorphism, then

$$
\bar{\alpha}^{\mathbf{U}}(\vec{x})=w \Longrightarrow \bar{\alpha}^{\mathbf{v}}(\pi \vec{x})=\pi w
$$

$\mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow \Longleftrightarrow \mathbf{U}$ is finite, generated by \vec{x} and $\bar{\alpha}^{\mathbf{U}}(\vec{x}) \downarrow$

Uniform processes, summary

- I The Locality Axiom:

A uniform process α of arity n and sort s of a structure $\mathbf{A}=\left(A, \Phi^{\mathbf{A}}\right)$ assigns to each substructure $\mathbf{U} \subseteq_{p} \mathbf{A}$ an n-ary partial function

$$
\bar{\alpha}^{\mathbf{U}}: U^{n} \rightharpoonup U_{s}
$$

It computes the partial function or relation $\bar{\alpha}^{\mathbf{A}}: A^{n} \rightharpoonup A_{s}$

$$
\mathbf{U} \vdash \alpha(\vec{x}) \downarrow \Longleftrightarrow \alpha^{\mathbf{U}}(\vec{x}) \downarrow
$$

- II The Homomorphism Axiom:

If $\mathbf{U}, \mathbf{V} \subseteq{ }_{p} \mathbf{A}$ and $\pi: \mathbf{U} \rightarrow \mathbf{V}$ is a homomorphism, then

$$
\bar{\alpha}^{\mathbf{U}}(\vec{x})=w \Longrightarrow \bar{\alpha}^{\mathbf{V}}(\pi \vec{x})=\pi w
$$

$\mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow \Longleftrightarrow \mathbf{U}$ is finite, generated by \vec{x} and $\bar{\alpha}^{\mathbf{U}}(\vec{x}) \downarrow$

- III The Finiteness Axiom:

$$
\mathbf{A} \vdash \alpha(\vec{x}) \downarrow \Longrightarrow\left(\exists \mathbf{U} \subseteq_{p} \mathbf{A}\right)\left[\mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right]
$$

Complexity measures for uniform processes

Complexity measures for uniform processes

- A substructure norm μ on \mathbf{A} assigns to each finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ generated by $\vec{x} \in U^{n}$ a number $\mu(\mathbf{U}, \vec{x})$

Complexity measures for uniform processes

- A substructure norm μ on \mathbf{A} assigns to each finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ generated by $\vec{x} \in U^{n}$ a number $\mu(\mathbf{U}, \vec{x})$
- $C_{\mu}(\alpha, \vec{x})=\min \left\{\mu(\mathbf{U}, \vec{x}): \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$

Complexity measures for uniform processes

- A substructure norm μ on \mathbf{A} assigns to each finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ generated by $\vec{x} \in U^{n}$ a number $\mu(\mathbf{U}, \vec{x})$
- $C_{\mu}(\alpha, \vec{x})=\min \left\{\mu(\mathbf{U}, \vec{x}): \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$
- $\operatorname{calls}_{\Phi_{0}}(\alpha, \vec{x})=\min \left\{\left|\operatorname{eqdiag}\left(\mathbf{U} \upharpoonright \Phi_{0}\right)\right|: \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\} \quad\left(\Phi_{0} \subseteq \Phi\right)$ (the least number of calls to $\phi \in \Phi_{0} \alpha$ must do to compute $\bar{\alpha}^{\mathbf{A}}(\vec{x})$)

Complexity measures for uniform processes

- A substructure norm μ on \mathbf{A} assigns to each finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ generated by $\vec{x} \in U^{n}$ a number $\mu(\mathbf{U}, \vec{x})$
- $C_{\mu}(\alpha, \vec{x})=\min \left\{\mu(\mathbf{U}, \vec{x}): \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$
- $\operatorname{calls}_{\Phi_{0}}(\alpha, \vec{x})=\min \left\{\left|\operatorname{eqdiag}\left(\mathbf{U} \upharpoonright \Phi_{0}\right)\right|: \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\} \quad\left(\Phi_{0} \subseteq \Phi\right)$ (the least number of calls to $\phi \in \Phi_{0} \alpha$ must do to compute $\bar{\alpha}^{\mathbf{A}}(\vec{x})$)
- $\operatorname{size}(\alpha, \vec{x})=\min \left\{|U|: \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$
(the least number of elements of \mathbf{A} that α must see)

Complexity measures for uniform processes

- A substructure norm μ on \mathbf{A} assigns to each finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ generated by $\vec{x} \in U^{n}$ a number $\mu(\mathbf{U}, \vec{x})$
- $C_{\mu}(\alpha, \vec{x})=\min \left\{\mu(\mathbf{U}, \vec{x}): \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$
- $\operatorname{calls}_{\Phi_{0}}(\alpha, \vec{x})=\min \left\{\left|\operatorname{eqdiag}\left(\mathbf{U} \upharpoonright \Phi_{0}\right)\right|: \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\} \quad\left(\Phi_{0} \subseteq \Phi\right)$ (the least number of calls to $\phi \in \Phi_{0} \alpha$ must do to compute $\bar{\alpha}^{\mathbf{A}}(\vec{x})$)
- $\operatorname{size}(\alpha, \vec{x})=\min \left\{|U|: \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$
(the least number of elements of \mathbf{A} that α must see)
- $\operatorname{depth}(\alpha, \vec{x})=\min \left\{\operatorname{depth}(\mathbf{U}, \vec{x}): \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$
(the least number of calls α must execute in sequence)

Complexity measures for uniform processes

- A substructure norm μ on \mathbf{A} assigns to each finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ generated by $\vec{x} \in U^{n}$ a number $\mu(\mathbf{U}, \vec{x})$
- $C_{\mu}(\alpha, \vec{x})=\min \left\{\mu(\mathbf{U}, \vec{x}): \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$
- $\operatorname{calls}_{\Phi_{0}}(\alpha, \vec{x})=\min \left\{\left|\operatorname{eqdiag}\left(\mathbf{U} \upharpoonright \Phi_{0}\right)\right|: \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\} \quad\left(\Phi_{0} \subseteq \Phi\right)$ (the least number of calls to $\phi \in \Phi_{0} \alpha$ must do to compute $\bar{\alpha}^{\mathbf{A}}(\vec{x})$)
- $\operatorname{size}(\alpha, \vec{x})=\min \left\{|U|: \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$
(the least number of elements of \mathbf{A} that α must see)
- $\operatorname{depth}(\alpha, \vec{x})=\min \left\{\operatorname{depth}(\mathbf{U}, \vec{x}): \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$
(the least number of calls α must execute in sequence)
Thm $\quad \operatorname{depth}(\alpha, \vec{x}) \leq \operatorname{size}(\alpha, \vec{x}) \leq \operatorname{calls}(\alpha, \vec{x}) \quad\left(=\operatorname{calls}_{\Phi}(\alpha, \vec{x})\right)$

Complexity measures for uniform processes

- A substructure norm μ on \mathbf{A} assigns to each finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ generated by $\vec{x} \in U^{n}$ a number $\mu(\mathbf{U}, \vec{x})$
- $C_{\mu}(\alpha, \vec{x})=\min \left\{\mu(\mathbf{U}, \vec{x}): \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$
- $\operatorname{calls}_{\Phi_{0}}(\alpha, \vec{x})=\min \left\{\left|\operatorname{eqdiag}\left(\mathbf{U} \upharpoonright \Phi_{0}\right)\right|: \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\} \quad\left(\Phi_{0} \subseteq \Phi\right)$ (the least number of calls to $\phi \in \Phi_{0} \alpha$ must do to compute $\bar{\alpha}^{\mathbf{A}}(\vec{x})$)
- $\operatorname{size}(\alpha, \vec{x})=\min \left\{|U|: \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$
(the least number of elements of \mathbf{A} that α must see)
- $\operatorname{depth}(\alpha, \vec{x})=\min \left\{\operatorname{depth}(\mathbf{U}, \vec{x}): \mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow\right\}$
(the least number of calls α must execute in sequence)
Thm $\quad \operatorname{depth}(\alpha, \vec{x}) \leq \operatorname{size}(\alpha, \vec{x}) \leq \operatorname{calls}(\alpha, \vec{x}) \quad\left(=\operatorname{calls}_{\Phi}(\alpha, \vec{x})\right)$

These are not larger than standard definitions for concrete algorithms

\star The forcing and certification relations

Suppose $f: A^{n} \rightharpoonup A_{s}, f(\vec{x}) \downarrow, \mathbf{U} \subseteq_{p} \mathbf{A}$.

\star The forcing and certification relations

Suppose $f: A^{n} \rightharpoonup A_{s}, f(\vec{x}) \downarrow, \mathbf{U} \subseteq_{p} \mathbf{A}$.

- A homomorphism $\pi: \mathbf{U} \rightarrow \mathbf{A}$ respects f at \vec{x} if

$$
\vec{x} \in U^{n} \& f(\vec{x}) \in U_{s} \& \pi(f(\vec{x}))=f(\pi(\vec{x}))
$$

so for relations $\vec{x} \in U^{n} \&(R(\vec{x}) \Longleftrightarrow R(\pi(\vec{x})))$

\star The forcing and certification relations

Suppose $f: A^{n} \rightharpoonup A_{s}, f(\vec{x}) \downarrow, \mathbf{U} \subseteq_{p} \mathbf{A}$.

- A homomorphism $\pi: \mathbf{U} \rightarrow \mathbf{A}$ respects f at \vec{x} if

$$
\vec{x} \in U^{n} \& f(\vec{x}) \in U_{s} \& \pi(f(\vec{x}))=f(\pi(\vec{x}))
$$

$$
\text { so for relations } \vec{x} \in U^{n} \&(R(\vec{x}) \Longleftrightarrow R(\pi(\vec{x})))
$$

$\mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) \downarrow \Longleftrightarrow$ every homomorphism $\pi: \mathbf{U} \rightarrow \mathbf{A}$ respects f at \vec{x}

\star The forcing and certification relations

Suppose $f: A^{n} \rightharpoonup A_{s}, f(\vec{x}) \downarrow, \mathbf{U} \subseteq_{p} \mathbf{A}$.

- A homomorphism $\pi: \mathbf{U} \rightarrow \mathbf{A}$ respects f at \vec{x} if

$$
\vec{x} \in U^{n} \& f(\vec{x}) \in U_{s} \& \pi(f(\vec{x}))=f(\pi(\vec{x}))
$$

so for relations $\vec{x} \in U^{n} \&(R(\vec{x}) \Longleftrightarrow R(\pi(\vec{x})))$
$\mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) \downarrow \Longleftrightarrow$ every homomorphism $\pi: \mathbf{U} \rightarrow \mathbf{A}$ respects f at \vec{x}
$\mathbf{U} \Vdash_{c}^{\mathbf{A}} f(\vec{x}) \downarrow \Longleftrightarrow \mathbf{U}$ is finite, generated by \vec{x} and $\mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) \downarrow$

\star The forcing and certification relations

Suppose $f: A^{n} \rightharpoonup A_{s}, f(\vec{x}) \downarrow, \mathbf{U} \subseteq_{p} \mathbf{A}$.

- A homomorphism $\pi: \mathbf{U} \rightarrow \mathbf{A}$ respects f at \vec{x} if

$$
\vec{x} \in U^{n} \& f(\vec{x}) \in U_{s} \& \pi(f(\vec{x}))=f(\pi(\vec{x}))
$$

$$
\text { so for relations } \vec{x} \in U^{n} \&(R(\vec{x}) \Longleftrightarrow R(\pi(\vec{x})))
$$

$\mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) \downarrow \Longleftrightarrow$ every homomorphism $\pi: \mathbf{U} \rightarrow \mathbf{A}$ respects f at \vec{x}
$\mathbf{U} \Vdash_{c}^{\mathbf{A}} f(\vec{x}) \downarrow \Longleftrightarrow \mathbf{U}$ is finite, generated by \vec{x} and $\mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) \downarrow$
The intrinsic complexities of f in \mathbf{A}

- $C_{\mu}(\mathbf{A}, f, \vec{x})=\min \left\{\mu(\mathbf{U}, \vec{x}): \mathbf{U} \Vdash_{c} f(\vec{x}) \downarrow\right\} \in \mathbb{N} \cup\{\infty\}$

\star The forcing and certification relations

Suppose $f: A^{n} \rightharpoonup A_{s}, f(\vec{x}) \downarrow, \mathbf{U} \subseteq_{p} \mathbf{A}$.

- A homomorphism $\pi: \mathbf{U} \rightarrow \mathbf{A}$ respects f at \vec{x} if

$$
\vec{x} \in U^{n} \& f(\vec{x}) \in U_{s} \& \pi(f(\vec{x}))=f(\pi(\vec{x}))
$$

$$
\text { so for relations } \vec{x} \in U^{n} \&(R(\vec{x}) \Longleftrightarrow R(\pi(\vec{x})))
$$

$\mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) \downarrow \Longleftrightarrow$ every homomorphism $\pi: \mathbf{U} \rightarrow \mathbf{A}$ respects f at \vec{x} $\mathbf{U} \Vdash_{c}^{\mathbf{A}} f(\vec{x}) \downarrow \Longleftrightarrow \mathbf{U}$ is finite, generated by \vec{x} and $\mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) \downarrow$

The intrinsic complexities of f in \mathbf{A}

- $C_{\mu}(\mathbf{A}, f, \vec{x})=\min \left\{\mu(\mathbf{U}, \vec{x}): \mathbf{U} \Vdash_{c} f(\vec{x}) \downarrow\right\} \in \mathbb{N} \cup\{\infty\}$
- ${\operatorname{calls} \Phi_{0}}(\mathbf{A}, f, \vec{x})=\min \left\{\left|\operatorname{eqdiag}\left(\mathbf{U} \upharpoonright \Phi_{0}\right)\right|: \mathbf{U} \Vdash_{c}^{\mathbf{A}} f(\vec{x}) \downarrow\right\}$
- $\operatorname{size}(\mathbf{A}, f, \vec{x})=\min \left\{|U|: \mathbf{U} \Vdash_{c}^{\mathbf{A}} f(\vec{x}) \downarrow\right\}$
- $\operatorname{depth}(\mathbf{A}, f, \vec{x})=\min \left\{\operatorname{depth}(\mathbf{U}, \vec{x}): \mathbf{U} \Vdash_{c}^{\mathbf{A}} f(\vec{x}) \downarrow\right\}$

Deriving lower bounds by constructing homomorphisms

- The following two facts are immediate from the definitions:

Deriving lower bounds by constructing homomorphisms

- The following two facts are immediate from the definitions:

Lemma
If α is a uniform process which computes $f: A^{n} \rightharpoonup A_{s}$ in \mathbf{A}, then

$$
C_{\mu}(\mathbf{A}, f, \vec{x}) \leq C_{\mu}(\alpha, \vec{x}) \quad(f(\vec{x}) \downarrow)
$$

Deriving lower bounds by constructing homomorphisms

- The following two facts are immediate from the definitions:

Lemma
If α is a uniform process which computes $f: A^{n} \rightharpoonup A_{s}$ in \mathbf{A}, then

$$
C_{\mu}(\mathbf{A}, f, \vec{x}) \leq C_{\mu}(\alpha, \vec{x}) \quad(f(\vec{x}) \downarrow)
$$

Lemma (The homomorphism test)
Suppose μ is a substructure norm (e.g., calls $\Phi_{\Phi_{0}}$, size, depth) on a Φ-structure A, $f: A^{n} \rightharpoonup A_{s}, f(\vec{x}) \downarrow$, and
for every finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ which is generated by \vec{x},
$\left(f(\vec{x}) \in U_{s} \& \mu(\mathbf{U}, \vec{x})<m\right) \Longrightarrow(\exists \pi: \mathbf{U} \rightarrow \mathbf{A})[f(\pi(\vec{x})) \neq \pi(f(\vec{x}))] ;$
then $C_{\mu}(\mathbf{A}, f, \vec{x}) \geq m$.

A lower bound for coprimeness on \mathbb{N}
 $\mathbf{A}=(\mathbb{N}, 0,1,+,-$, iq, rem,$=,<, \boldsymbol{\Psi}), \boldsymbol{\Psi}$ a finite set of Presburger functions

A lower bound for coprimeness on \mathbb{N}

$\mathbf{A}=(\mathbb{N}, 0,1,+,-, \mathrm{iq}, \mathrm{rem},=,<, \boldsymbol{\Psi}), \boldsymbol{\Psi}$ a finite set of Presburger functions Theorem (van den Dries, ynm, 2004, 2009) If $\xi>1$ is quadratic irrational, then for some $r>0$ and all sufficiently large coprime (a, b),

$$
\left|\xi-\frac{a}{b}\right|<\frac{1}{b^{2}} \Longrightarrow \operatorname{depth}(\mathbf{A}, \Perp, a, b) \geq r \log \log a .
$$

A lower bound for coprimeness on \mathbb{N}

$\mathbf{A}=(\mathbb{N}, 0,1,+,-$, iq, rem,$=,<, \boldsymbol{\Psi}), \boldsymbol{\Psi}$ a finite set of Presburger functions Theorem (van den Dries, ynm, 2004, 2009) If $\xi>1$ is quadratic irrational, then for some $r>0$ and all sufficiently large coprime (a, b),

$$
\begin{equation*}
\left|\xi-\frac{a}{b}\right|<\frac{1}{b^{2}} \Longrightarrow \operatorname{depth}(\mathbf{A}, \Perp, a, b) \geq r \log \log a . \tag{1}
\end{equation*}
$$

In particular, the conclusion of (1) holds with some r

- for positive Pell pairs (a, b) satisfying $a^{2}=2 b^{2}+1 \quad(\xi=\sqrt{2})$
- for Fibonacci pairs $\left(F_{k+1}, F_{k}\right)$ with $k \geq 3 \quad\left(\xi=\frac{1}{2}(1+\sqrt{5})\right)$

A lower bound for coprimeness on \mathbb{N}

$\mathbf{A}=(\mathbb{N}, 0,1,+,-$, iq, rem,$=,<, \boldsymbol{\Psi}), \boldsymbol{\Psi}$ a finite set of Presburger functions Theorem (van den Dries, ynm, 2004, 2009) If $\xi>1$ is quadratic irrational, then for some $r>0$ and all sufficiently large coprime (a, b),

$$
\begin{equation*}
\left|\xi-\frac{a}{b}\right|<\frac{1}{b^{2}} \Longrightarrow \operatorname{depth}(\mathbf{A}, \Perp, a, b) \geq r \log \log a . \tag{1}
\end{equation*}
$$

In particular, the conclusion of (1) holds with some r

- for positive Pell pairs (a, b) satisfying $a^{2}=2 b^{2}+1 \quad(\xi=\sqrt{2})$
- for Fibonacci pairs $\left(F_{k+1}, F_{k}\right)$ with $k \geq 3 \quad\left(\xi=\frac{1}{2}(1+\sqrt{5})\right)$ Theorem (Pratt, unpublished)
There is a non-deterministic algorithm $\varepsilon_{n d}$ of \mathbf{N}_{ε} which decides coprimeness, is at least as effective as the Euclidean everywhere and

$$
\operatorname{calls}\left(\varepsilon_{n d}, F_{k+1}, F_{k}\right) \leq K \log \log F_{k+1}
$$

A lower bound for coprimeness on \mathbb{N}

$\mathbf{A}=(\mathbb{N}, 0,1,+,-$, iq , rem,$=,<, \boldsymbol{\Psi}), \boldsymbol{\Psi}$ a finite set of Presburger functions
Theorem (van den Dries, ynm, 2004, 2009)
If $\xi>1$ is quadratic irrational, then for some $r>0$ and all sufficiently large coprime (a, b),

$$
\begin{equation*}
\left|\xi-\frac{a}{b}\right|<\frac{1}{b^{2}} \Longrightarrow \operatorname{depth}(\mathbf{A}, \Perp, a, b) \geq r \log \log a . \tag{1}
\end{equation*}
$$

In particular, the conclusion of (1) holds with some r

- for positive Pell pairs (a, b) satisfying $a^{2}=2 b^{2}+1 \quad(\xi=\sqrt{2})$
- for Fibonacci pairs $\left(F_{k+1}, F_{k}\right)$ with $k \geq 3 \quad\left(\xi=\frac{1}{2}(1+\sqrt{5})\right)$ Theorem (Pratt, unpublished)
There is a non-deterministic algorithm $\varepsilon_{n d}$ of \mathbf{N}_{ε} which decides coprimeness, is at least as effective as the Euclidean everywhere and

$$
\operatorname{calls}\left(\varepsilon_{n d}, F_{k+1}, F_{k}\right) \leq K \log \log F_{k+1}
$$

- The theorem is best possible from its hypotheses

Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only insist that it works for and uses only N-bit numbers?

Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only insist that it works for and uses only N-bit numbers?
$\mathbf{A}=(\mathbb{N}, 0,1,+,-\dot{\text { iq }}$, rem,$=,<, \boldsymbol{\Psi})$ as before.
For any N, and any one of the intrinsic complexities as above, let

$$
C_{\mu}\left(\mathbf{A}, f, 2^{N}\right)=\max \left\{C_{\mu}\left(\mathbf{A} \upharpoonright\left[0,2^{N}\right), f, \vec{x}\right): x_{1}, \ldots, x_{n}<2^{N}\right\}
$$

Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only insist that it works for and uses only N-bit numbers?
$\mathbf{A}=(\mathbb{N}, 0,1,+,-, \mathrm{iq}$, rem,$=,<, \boldsymbol{\Psi})$ as before.
For any N, and any one of the intrinsic complexities as above, let

$$
C_{\mu}\left(\mathbf{A}, f, 2^{N}\right)=\max \left\{C_{\mu}\left(\mathbf{A} \upharpoonright\left[0,2^{N}\right), f, \vec{x}\right): x_{1}, \ldots, x_{n}<2^{N}\right\}
$$

Theorem (van den Dries, ynm 2009)
For some rational number $r>0$ and all sufficiently large N,

$$
\operatorname{calls}\left(\mathbf{A}, \Perp, 2^{N}\right) \geq \operatorname{size}\left(\mathbf{A}, \Perp, 2^{N}\right) \geq r \log N
$$

Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only insist that it works for and uses only N-bit numbers?
$\mathbf{A}=(\mathbb{N}, 0,1,+,-\dot{,}$ iq, rem,$=,<, \boldsymbol{\Psi})$ as before.
For any N, and any one of the intrinsic complexities as above, let

$$
C_{\mu}\left(\mathbf{A}, f, 2^{N}\right)=\max \left\{C_{\mu}\left(\mathbf{A} \upharpoonright\left[0,2^{N}\right), f, \vec{x}\right): x_{1}, \ldots, x_{n}<2^{N}\right\}
$$

Theorem (van den Dries, ynm 2009)
For some rational number $r>0$ and all sufficiently large N,

$$
\operatorname{calls}\left(\mathbf{A}, \Perp, 2^{N}\right) \geq \operatorname{size}\left(\mathbf{A}, \Perp, 2^{N}\right) \geq r \log N
$$

- Non-uniform lower bound for $\operatorname{depth}\left(\mathbf{A}, \Perp, 2^{N}\right)$?

The optimality of Horner's rule for polynomial 0-testing The nullity relation on a field F :

$$
N_{F}\left(a_{0}, \ldots, a_{n}, x\right) \Longleftrightarrow a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0
$$

The optimality of Horner's rule for polynomial 0-testing

 The nullity relation on a field F :$$
N_{F}\left(a_{0}, \ldots, a_{n}, x\right) \Longleftrightarrow a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0
$$

Theorem

Let F be the field of real or complex numbers. If $n \geq 1$ and a_{0}, \ldots, a_{n}, x are algebraically independent in F, then:
(1) calls $_{\{, \cdot,\}}\left(F, N_{F}, \vec{a}, x\right)=n$
(2) calls $_{\{,, \div,=\}}\left(F, N_{F}, \vec{a}, x\right)=n+1$

The optimality of Horner's rule for polynomial 0-testing

 The nullity relation on a field F :$$
N_{F}\left(a_{0}, \ldots, a_{n}, x\right) \Longleftrightarrow a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0
$$

Theorem

Let F be the field of real or complex numbers.
If $n \geq 1$ and a_{0}, \ldots, a_{n}, x are algebraically independent in F, then:
(1) calls $_{\{\cdot, \div\}}\left(F, N_{F}, \vec{a}, x\right)=n$
(2) calls $\left\{_{\{, \div,=\}}\left(F, N_{F}, \vec{a}, x\right)=n+1\right.$

- The method for constructing the required homomorphsms is an elaboration of Winograd's proof of the optimality of Horner's rule for poly evaluation

The optimality of Horner's rule for polynomial 0-testing

 The nullity relation on a field F :$$
N_{F}\left(a_{0}, \ldots, a_{n}, x\right) \Longleftrightarrow a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0
$$

Theorem

Let F be the field of real or complex numbers.
If $n \geq 1$ and a_{0}, \ldots, a_{n}, x are algebraically independent in F, then:
(1) calls $\left\{_{\{,, \div\}}\left(F, N_{F}, \vec{a}, x\right)=n\right.$
(2) calls $\left\{_{\{, \div,=\}}\left(F, N_{F}, \vec{a}, x\right)=n+1\right.$

- The method for constructing the required homomorphsms is an elaboration of Winograd's proof of the optimality of Horner's rule for poly evaluation
- It is quite different from the method used in arithmetic and requires a homomorphism which is not an embedding in (2)

The optimality of Horner's rule for polynomial 0-testing

The nullity relation on a field F :

$$
N_{F}\left(a_{0}, \ldots, a_{n}, x\right) \Longleftrightarrow a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0
$$

Theorem

Let F be the field of real or complex numbers.
If $n \geq 1$ and a_{0}, \ldots, a_{n}, x are algebraically independent in F, then:
(1) calls $\left\{_{\{,, \div\}}\left(F, N_{F}, \vec{a}, x\right)=n\right.$
(2) calls $\left\{_{\{, \div,=\}}\left(F, N_{F}, \vec{a}, x\right)=n+1\right.$

- The method for constructing the required homomorphsms is an elaboration of Winograd's proof of the optimality of Horner's rule for poly evaluation
- It is quite different from the method used in arithmetic and requires a homomorphism which is not an embedding in (2)
- Due to Bürgisser and Lickteig (1992) for algebraic decision trees, along with much stronger results

