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Is the Euclidean algorithm optimal from its primitives?
For a, b ∈ N = {0, 1, . . .}, a ≥ b ≥ 1,

(ε) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

where a = iq(a, b)b + rem(a, b) (0 ≤ rem(a, b) < b)

calls{rem}(ε, a, b) = the number of divisions ε needs to compute gcd(a, b)

≤ 2 log(b) (a ≥ b ≥ 2)

I Is ε optimal for computing gcd(a, b) from {rem, =0}?
I a⊥⊥b ⇐⇒ gcd(a, b) = 1

Is ε optimal for deciding coprimeness from {rem, =0, =1}?
I And is this true for all algorithms from {rem, =0, =1}?

Conjecture: For every algorithm α which decides coprimeness
from {rem, =0,=1}
(∃r > 0)(for infinitely many a ≥ b, calls{rem}(α, a, b) ≥ r log(a)
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The value complexities I

• A classical method for establishing lower bounds that restrict all
algorithms assuming practically nothing about “what algorithms are”:

Horner’s rule: For any field F and n ≥ 1, the value of a
polynomial of degree n can be computed using no more than n
multiplications and n additions in F :

a0 + a1x + a2x
2 + · · ·+ anx

n = a0 + x
(
a1 + a2x + · · ·+ anx

n−1
)

Theorem (Pan 1966, (Winograd 1967, 1970))

Every algorithm from the complex field operations requires at least
n multiplications/divisions and at least n additions/subtractions to
compute a0 + a1x + a2x

2 + · · ·+ anx
n when ~a, x are algebraically

independent complex numbers (the generic case)

. . . because it takes that many applications of the field operations
to construct the value a0 + a1x + a2x

2 + · · ·+ anx
n from a0, . . . , an, x
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The value complexities II

Theorem (van den Dries)

If an algorithm α computes gcd(x , y) from 0, 1, +,−, iq, rem, ·, < and

calls(α, x , y) = the number of calls to the primitives

α makes to compute gcd(x , y),

then for all a > b such that a2 = 2b2 + 1 (Pell pairs),

calls(α, a + 1, b) ≥ 1

4

√
log log b

. . . because it takes at least that many applications of the primitives
to construct the value gcd(a + 1, b) when (a, b) is a Pell pair
I This method cannot yield lower bounds for decision problems

(because their output (tt or ff) is available with no computation)
I and it is open whether algorithms that decide coprimeness

from these primitives (which include multiplication) must execute
O(

√
log log max(x , y)) operations on an infinite set of inputs
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(Partial) structures
I A (partial) structure is a tuple A = (A,ΦA) where Φ is a set

of function and relation symbols and ΦA = {φA}φ∈Φ, where
with sφ ∈ {a, boole}, Aa = A, Aboole = {tt, ff},

φA : Anφ ⇀ Asφ
i.e., φA : Anφ ⇀ A or φA : Anφ ⇀ {tt, ff}

I N = (N, 0, 1, +, ·, =), the standard structure of arithmetic

I Nε = (N, rem,=0,=1), the Euclidean structure

I Nε¹U = (U, rem ¹U, =0¹U, =1¹U) where U ⊆ N and

(f ¹U)(x , y) = w ⇐⇒ ~x ∈ Un, w ∈ Us & f (~x) = w

I The (equational) diagram of a Φ-structure is the set of its
basic equations,

eqdiag(A) = {(φ,~x , w) : ~x ∈ Anφ , w ∈ Asφ
, and φA(~x) = w}

I We may assume that A is completely determined by eqdiag(A)
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Sample result: the intrinsic calls complexity

With each structure A = (A,Φ), each Φ0 ⊆ Φ and each (partial)
function or relation f : An ⇀ As we will associate a partial function

~x 7→ callsΦ0(A, f ,~x) ∈ N (f (~x)↓)

such that:

(?) If α is any algorithm from Φ which computes f , then

callsΦ0(A, f ,~x) ≤ callsΦ0(α,~x) (f (~x)↓)

I (?) is not trivial: in some important examples in arithmetic
and algebra it yields the best known lower bound results

I (?) is a theorem for concrete algorithms specified by the usual
computation models; it is plausible for all algorithms from Φ

I The results are about several natural complexity measures on
algorithms from primitives, not only “the number of calls to Φ0”

I The methods are from abstract model theory
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Slogan: Absolute lower bound results
are the undecidability facts about decidable problems

(1) Preliminaries

(2) Uniform processes

(3) Comprimeness in N
(4) Polynomial 0-testing

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004)
Arithmetic complexity (with van Den Dries, 2009)
Recursion and complexity (notes) www.math.ucla.edu/∼ynm
(currently under repair)

Y. Mansour, B. Schieber, and P. Tiwari (1991)
A lower bound for integer greatest common divisor computations,
Lower bounds for computations with the floor operation

J. Meidânis (1991): Lower bounds for arithmetic problems
P. Bürgisser and T. Lickteig (1992)

Verification complexity of linear prime ideals
P. Bürgisser, T. Lickteig, and M. Shub (1992),

Test complexity of generic polynomials
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Substructures and homomorphisms

I Substructures (pieces):

U ⊆p A = (A,Φ) ⇐⇒ U ⊆ A & eqdiag(U) ⊆ eqdiag(A)

⇐⇒ U ⊆ A & (∀φ ∈ Φ)[φU v φA]

Substructures may be finite and not closed under Φ

I A homomorphism π : U ½ V is any π : U → V such that for
all φ ∈ Φ, x1, . . . , xn ∈ U,w ∈ Us , (with π(tt) = tt, π(ff) = ff)

φU(x1, . . . , xn) = w =⇒ φV(πx1, . . . , πxn) = πw

• May have x 6= y , π(x) = π(y), unless (=, x , y ,ff) ∈ eqdiag(U)
• π is an embedding if it is injective (in which case it preserves 6=)

I We use finite substructures U ⊆p A to represent calls to the
primitives executed during a computation in A
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Algorithms from primitives – the basic intuition

An n-ary algorithm α of A = (A,Φ) (or from Φ)“computes” some
n-ary partial function or relation

α = αA : An ⇀ As

using the primitives in Φ as oracles and nothing else about A

We understand this to mean that in the course of a “computation”
of α(~x), the algorithm may request from the oracle for any φA any
particular value φA(~u), for arguments ~u which it has already
computed from ~x , and that if the oracles cooperate, then “the
computation” of α(~x) is completed in a finite number of “steps”

I The notion of a uniform process attempts to capture
minimally (in the style of abstract model theory) these aspects
of algorithms from primitives

I It does not capture their effectiveness, but their uniformity
—that an algorithm applies “the same procedure” to all
arguments in its domain
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Uniform processes: I The Locality Axiom

A uniform process α of arity n and sort s of a structure
A = (A, ΦA) assigns to each substructure U ⊆p A an n-ary partial
function

αU : Un ⇀ Us

It computes the partial function or relation αA : An ⇀ As

I For an algorithm α, intuitively, αU is the restriction to U of
the partial function computed by α when the oracles respond
only to questions with answers in eqdiag(U)

We write

U ` α(~x) = w ⇐⇒ αU(~x) = w ,

U ` α(~x)↓ ⇐⇒ (∃w)[αU(~x) = w ]
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Uniform processes: II The Homomorphism Axiom

If α is an n-ary uniform process of A, U,V ⊆p A, and π : U → V
is a homomorphism, then

U ` α(~x) = w =⇒ V ` α(π~x) = πw (x1, . . . , xn ∈ U, w ∈ Us)

In particular, if U ⊆p A, then αUvαA

I For algorithms: when asked for φU(~x), the oracle for φ may
consistently provide φV(π~x), if π is a homomorphism

I This is obvious for the identity embedding I : U ½ A, but it
is a strong restriction for algorithms from rich primitives
(stacks, higher type constructs, etc.)

I It can be verified for the standard computation models
(deterministic and non-deterministic)
provided all their primitives are included in Φ
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Uniform processes: III The Finiteness Axiom

If α is an n-ary uniform process of A, then

A ` α(~x) = w

=⇒ there is a finite U ⊆p A generated by ~x such that U ` α(~x) = w

I For every call φ(~u) to the primitives, the algorithm must
construct the arguments ~u, and so the entire computation
takes place within a finite substructure generated by the input ~x

We write

U `c α(~x) = w ⇐⇒ U is finite, generated by ~x and U ` α(~x) = w ,

U `c α(~x)↓ ⇐⇒ (∃w)[U `c α(~x) = w ]

and we think of (U,~x ,w) as a computation of α on the input ~x
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Uniform processes, summary
I I The Locality Axiom:

A uniform process α of arity n and sort s of a structure
A = (A, ΦA) assigns to each substructure U ⊆p A an n-ary
partial function

αU : Un ⇀ Us

It computes the partial function or relation αA : An ⇀ As

U ` α(~x)↓ ⇐⇒ αU(~x)↓
I II The Homomorphism Axiom:

If U,V ⊆p A and π : U → V is a homomorphism, then

αU(~x) = w =⇒ αV(π~x) = πw

U `c α(~x)↓ ⇐⇒ U is finite, generated by ~x and αU(~x)↓
I III The Finiteness Axiom:

A ` α(~x)↓ =⇒ (∃U ⊆p A)[U `c α(~x)↓ ]
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Complexity measures for uniform processes

I A substructure norm µ on A assigns to each finite U ⊆p A
generated by ~x ∈ Un a number µ(U,~x)

I Cµ(α,~x) = min{µ(U,~x) : U `c α(~x)↓}

I callsΦ0(α,~x) = min{|eqdiag(U ¹Φ0)| : U `c α(~x)↓} (Φ0 ⊆ Φ)

(the least number of calls to φ ∈ Φ0 α must do to compute αA(~x))

I size(α,~x) = min{|U| : U `c α(~x)↓}
(the least number of elements of A that α must see)

I depth(α,~x) = min{depth(U,~x) : U `c α(~x)↓}
(the least number of calls α must execute in sequence)

Thm depth(α,~x) ≤ size(α,~x) ≤ calls(α,~x) (= callsΦ(α,~x))

These are not larger than standard definitions for concrete algorithms
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? The forcing and certification relations

Suppose f : An ⇀ As , f (~x)↓ , U ⊆p A.

I A homomorphism π : U → A respects f at ~x if

~x ∈ Un & f (~x) ∈ Us & π(f (~x)) = f (π(~x))

so for relations ~x ∈ Un &
(
R(~x) ⇐⇒ R(π(~x))

)

U °A f (~x)↓ ⇐⇒ every homomorphism π : U → A respects f at ~x

U °A
c f (~x)↓ ⇐⇒ U is finite, generated by ~x and U °A f (~x)↓

The intrinsic complexities of f in A

I Cµ(A, f ,~x) = min{µ(U,~x) : U °c f (~x)↓} ∈ N ∪ {∞}
I callsΦ0(A, f ,~x) = min{|eqdiag(U ¹Φ0)| : U °A

c f (~x)↓}
I size(A, f ,~x) = min{|U| : U °A

c f (~x)↓}
I depth(A, f ,~x) = min{depth(U,~x) : U °A

c f (~x)↓}
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Deriving lower bounds by constructing homomorphisms

• The following two facts are immediate from the definitions:

Lemma
If α is a uniform process which computes f : An ⇀ As in A, then

Cµ(A, f ,~x) ≤ Cµ(α,~x) (f (~x)↓)

Lemma (The homomorphism test)

Suppose µ is a substructure norm (e.g., callsΦ0 , size, depth) on a
Φ-structure A, f : An ⇀ As , f (~x)↓ , and

for every finite U ⊆p A which is generated by ~x ,(
f (~x) ∈ Us & µ(U,~x) < m

)
=⇒ (∃π : U → A)[f (π(~x)) 6= π(f (~x))];

then Cµ(A, f ,~x) ≥ m.
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A lower bound for coprimeness on N
A = (N, 0, 1, +,−· , iq, rem, =, <,Ψ), Ψ a finite set of Presburger functions

Theorem (van den Dries, ynm, 2004, 2009)

If ξ > 1 is quadratic irrational, then for some r > 0 and all
sufficiently large coprime (a, b),

∣∣∣ξ − a

b

∣∣∣ <
1

b2
=⇒ depth(A,⊥⊥, a, b) ≥ r log log a. (1)

In particular, the conclusion of (1) holds with some r
I for positive Pell pairs (a, b) satisfying a2 = 2b2 + 1 (ξ =

√
2)

I for Fibonacci pairs (Fk+1, Fk) with k ≥ 3 (ξ = 1
2(1 +

√
5))

Theorem (Pratt, unpublished)

There is a non-deterministic algorithm εnd of Nε which decides
coprimeness, is at least as effective as the Euclidean everywhere and

calls(εnd , Fk+1, Fk) ≤ K log log Fk+1

I The theorem is best possible from its hypotheses
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Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only
insist that it works for and uses only N-bit numbers?

A = (N, 0, 1,+,−· , iq, rem, =, <,Ψ) as before.
For any N, and any one of the intrinsic complexities as above, let

Cµ(A, f , 2N) = max{Cµ(A ¹[0, 2N), f ,~x) : x1, . . . , xn < 2N}

Theorem (van den Dries, ynm 2009)

For some rational number r > 0 and all sufficiently large N,

calls(A,⊥⊥, 2N) ≥ size(A,⊥⊥, 2N) ≥ r log N.

I Non-uniform lower bound for depth(A,⊥⊥, 2N)?
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The optimality of Horner’s rule for polynomial 0-testing
The nullity relation on a field F :

NF (a0, . . . , an, x) ⇐⇒ a0 + a1x + a2x
2 + · · ·+ anx

n = 0

Theorem
Let F be the field of real or complex numbers.
If n ≥ 1 and a0, . . . , an, x are algebraically independent in F , then:

(1) calls{·,÷}(F , NF ,~a, x) = n

(2) calls{·,÷,=}(F , NF ,~a, x) = n + 1

I The method for constructing the required homomorphsms is
an elaboration of Winograd’s proof of the optimality of
Horner’s rule for poly evaluation

I It is quite different from the method used in arithmetic and
requires a homomorphism which is not an embedding in (2)

I Due to Bürgisser and Lickteig (1992) for algebraic decision
trees, along with much stronger results
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(1) calls{·,÷}(F , NF ,~a, x) = n

(2) calls{·,÷,=}(F , NF ,~a, x) = n + 1

I The method for constructing the required homomorphsms is
an elaboration of Winograd’s proof of the optimality of
Horner’s rule for poly evaluation

I It is quite different from the method used in arithmetic and
requires a homomorphism which is not an embedding in (2)

I Due to Bürgisser and Lickteig (1992) for algebraic decision
trees, along with much stronger results
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