32nd Weak Arithmetics Days
 Athens, Greece

Circuit Lower Bounds in Bounded Arithmetics

Ján Pich
Charles University in Prague

June 21, 2013

Motivation
 Feasible witnessing of existential quantifiers in complexity-theoretic statements

e.g. Can it happen that $\mathrm{P} \neq \mathrm{NP}$ but there is no efficient method how to witness errors of p-time algorithms attempting to solve NP problems?

Motivation
 Feasible witnessing of existential quantifiers in complexity-theoretic statements

e.g. Can it happen that $\mathrm{P} \neq \mathrm{NP}$ but there is no efficient method how to witness errors of p-time algorithms attempting to solve NP problems?

Language

$L_{b i t}: 0, S,+, \cdot,=, \leq$

Language

$L_{b i t}: 0, S,+, \cdot,=, \leq$
$\lfloor x / 2\rfloor$
$|x| \quad$ (the length of the binary representation of x)
$\# \quad\left(x \# y=2^{|x| \cdot|y|}\right)$
$x_{i} \quad$ (the i-th bit of the binary representation of x)

Language

$L_{b i t}: 0, S,+, \cdot,=, \leq$
$\lfloor x / 2\rfloor$
$|x| \quad$ (the length of the binary representation of x)
$\# \quad\left(x \# y=2^{|x| \cdot|y|}\right)$
$x_{i} \quad$ (the i-th bit of the binary representation of x)
Bounded quantifiers: $\quad \exists x, x \leq t ; \forall x, x \leq t$ Sharply bounded quantifiers: $\exists x, x \leq|t| ; \forall x, x \leq|t|$
(t is a term not containing x)

Language

$L_{b i t}: 0, S,+, \cdot,=, \leq$
$\lfloor x / 2\rfloor$
$|x| \quad$ (the length of the binary representation of x)
$\# \quad\left(x \# y=2^{|x| \cdot|y|}\right)$
$x_{i} \quad$ (the i-th bit of the binary representation of x)
Bounded quantifiers: $\quad \exists x, x \leq t ; \forall x, x \leq t$
Sharply bounded quantifiers: $\exists x, x \leq|t| ; \forall x, x \leq|t|$
(t is a term not containing x)
$\sum_{0}^{b}($ bit $)\left(=\Pi_{0}^{b}(\right.$ bit $\left.)\right): L_{b i t}$-formulas with all quantifiers sharply bounded $\sum_{i+1}^{b}(b i t)$ formulas: constructed from $\Pi_{i}^{b}(b i t)$ by sharply bounded and existential bounded quantifiers
Π_{i+1}^{b} (bit) formulas: constructed from $\sum_{i}^{b}($ bit $)$ by sharply bounded and universal bounded quantifiers

Circuit lower bounds

k, n_{0} constants
$L B\left(S A T, n^{k}\right) \equiv$
$\forall 1^{n}>n_{0}$ (shortcut for $\forall m, n$ such that $m>n_{0} \wedge|m|=n$)
$\forall C \quad$ (circuit with n inputs) $\exists y$ (formula), a (assignment of y) $|a|<|y|=n$ $\forall w$ (computation of C), z (assignment of y) $|w| \leq n^{k},|z|<|y|$ $[\operatorname{Comp}(C, y, w) \rightarrow$

$$
(C(y ; w)=1 \wedge \neg S A T(y, z)) \vee(C(y ; w)=0 \wedge S A T(y, a))]
$$

$\operatorname{Comp}(C, y, w) \equiv " w$ is computation of circuit C on input $y "$ $\operatorname{SAT}(y, z) \equiv " 3-C N F$ formula y is satisfied by assignment $z "$ $C(y ; w)=1 / 0 \equiv " w$ is accepting/rejecting computation of C on input $y "$

Circuit lower bounds

k, n_{0} constants
$L B\left(S A T, n^{k}\right) \equiv$
$\forall 1^{n}>n_{0}$ (shortcut for $\forall m, n$ such that $m>n_{0} \wedge|m|=n$)
$\forall C \quad$ (circuit with n inputs) $\exists y$ (formula), a (assignment of y) $|a|<|y|=n$ $\forall w$ (computation of C), z (assignment of y) $|w| \leq n^{k},|z|<|y|$ $[\operatorname{Comp}(C, y, w) \rightarrow$

$$
(C(y ; w)=1 \wedge \neg S A T(y, z)) \vee(C(y ; w)=0 \wedge S A T(y, a))]
$$

$\operatorname{Comp}(C, y, w) \equiv " w$ is computation of circuit C on input $y "$ $\operatorname{SAT}(y, z) \equiv " 3-C N F$ formula y is satisfied by assignment $z "$ $C(y ; w)=1 / 0 \equiv " w$ is accepting/rejecting computation of C on input $y "$ Comp, SAT, $C(y ; w)=1 / 0$ are $\Sigma_{0}^{b}(b i t) \Rightarrow L B\left(S A T, n^{k}\right)$ is $\Sigma_{2}^{b}($ bit $)$

Theory $S_{2}^{1}($ bit $)$

axioms: BASIC(bit) (capturing basic properties of symbols of $L_{b i t}$) polynomial induction for $\sum_{1}^{b}(b i t)$-formulas A :

$$
A(0) \wedge \forall x(A(\lfloor x / 2\rfloor) \rightarrow A(x)) \rightarrow \forall x A(x)
$$

Theory $S_{2}^{1}(b i t)$

axioms: BASIC(bit) (capturing basic properties of symbols of $L_{b i t}$) polynomial induction for $\sum_{1}^{b}(b i t)$-formulas A :

$$
A(0) \wedge \forall x(A(\lfloor x / 2\rfloor) \rightarrow A(x)) \rightarrow \forall x A(x)
$$

Theorem (Buss '86)
$S_{2}^{1}(b i t) \vdash \exists y A(x, y)$ for $\Sigma_{0}^{b}($ bit $)$-formula $A \Rightarrow \exists$ p-time function f s.t. $A(x, f(x))$ holds for any x.

Theory $S_{2}^{1}(b i t)$

axioms: BASIC(bit) (capturing basic properties of symbols of $L_{b i t}$) polynomial induction for $\sum_{1}^{b}(b i t)$-formulas A :

$$
A(0) \wedge \forall x(A(\lfloor x / 2\rfloor) \rightarrow A(x)) \rightarrow \forall x A(x)
$$

Theorem (Buss '86)

$S_{2}^{1}(b i t) \vdash \exists y A(x, y)$ for $\Sigma_{0}^{b}($ bit $)$-formula $A \Rightarrow \exists$ p-time function f s.t. $A(x, f(x))$ holds for any x.

Theorem (Krajíček '93)

$S_{2}^{1}($ bit $) \vdash \exists y \forall z \leq t A(x, y, z)$ for $\sum_{0}^{b}($ bit $)$-formula $A \Rightarrow \exists$ p-time algorithm S s.t. for any x either $\forall z \leq t A(x, S(x), z)$ or for some $z_{1} \neg A\left(x, S(x), z_{1}\right)$
In the latter case
either $\forall z \leq t A\left(x, S\left(x, z_{1}\right), z\right)$ or for some $z_{2} \neg A\left(x, S\left(x, z_{1}\right), z_{2}\right)$

Equivalent formalizations of $L B\left(S A T, n^{k}\right)$

e.g.
$\operatorname{SCE}\left(S A T, n^{k}\right) \equiv$

$$
\begin{array}{r}
\forall 1^{n}>n_{0} \forall C \exists y, a|a|<|y|=n \forall w, z|w| \leq n^{k},|z|<|y| \\
\operatorname{SAT}(y, a) \wedge(C(y ; w)=z \rightarrow \neg \operatorname{SAT}(y, z))
\end{array}
$$

for n_{0}, k constants

Equivalent formalizations of $L B\left(S A T, n^{k}\right)$

e.g.
$\operatorname{SCE}\left(S A T, n^{k}\right) \equiv$

$$
\begin{array}{r}
\forall 1^{n}>n_{0} \forall C \exists y, a|a|<|y|=n \forall w, z|w| \leq n^{k},|z|<|y| \\
\operatorname{SAT}(y, a) \wedge(C(y ; w)=z \rightarrow \neg \operatorname{SAT}(y, z))
\end{array}
$$

for n_{0}, k constants

Proposition

S_{2}^{1} (bit) proves

$$
\begin{aligned}
& S C E\left(S A T, n^{2 k}\right) \rightarrow \angle B\left(S A T, n^{k}\right) \\
& \angle B\left(S A T, n^{2 k}\right) \rightarrow \operatorname{SCE}\left(S A T, n^{k}\right)
\end{aligned}
$$

where n_{0} is arbitrary but the same constant in the assumption and the conclusion of each implication
$L B\left(S A T, n^{k}\right) \in P \equiv$
\exists p-time algorithm S s.t. for any n^{k}-size circuit C S outputs y, a s.t. $L B(C, y, a)$:

$$
C(y)=0 \wedge \operatorname{SAT}(y, a) \text { or } C(y)=1 \wedge \forall z \neg \operatorname{SAT}(y, z)
$$

$L B\left(S A T, n^{k}\right) \in P \equiv$
\exists p-time algorithm S s.t. for any n^{k}-size circuit $C S$ outputs y, a s.t. $L B(C, y, a)$:

$$
C(y)=0 \wedge \operatorname{SAT}(y, a) \text { or } C(y)=1 \wedge \forall z \neg \operatorname{SAT}(y, z)
$$

$\operatorname{LB}\left(S A T, n^{k}\right)$ has an S-T protocol with I rounds \equiv \exists p-time algorithm S s.t. for any function T :

S		
n^{k}-size circuit C	\longrightarrow	T y_{1}, a_{1} s.t. either $L B\left(C, y_{1}, a_{1}\right)$ or otherwise

w_{1}, z_{1} certifying $\neg L B\left(C, y_{1}, a_{1}\right) \longleftarrow$ having $C, w_{1}, z_{1} \quad \longrightarrow \quad y_{2}, a_{2}$ s.t. either $L B\left(C, y_{2}, a_{2}\right)$ or otherwise
w_{2}, z_{2} certifying $\neg L B\left(C, y_{2}, a_{2}\right)$

$$
C, w_{1}, z_{1}, \ldots w_{l}, z_{l} \quad \longrightarrow \quad y, \text { a s.t. } L B(C, y, a)
$$

Proposition

$$
\begin{aligned}
& S_{2}^{1}(b i t) \vdash L B\left(S A T, n^{k}\right) \Rightarrow \quad \begin{array}{l}
L B\left(S A T, n^{k}\right) \text { has an S-T protocol } \\
\text { with poly }(n) \text { rounds }
\end{array} \\
& S_{2}^{1}(b i t) \vdash \operatorname{SCE}\left(S A T, n^{k}\right) \Rightarrow \quad S C E\left(S A T, n^{k}\right) \in P
\end{aligned}
$$

Proposition

$$
\begin{array}{ll}
S_{2}^{1}(\text { bit }) \vdash L B\left(S A T, n^{k}\right) \Rightarrow & \begin{array}{l}
L B\left(S A T, n^{k}\right) \text { has an S-T protocol } \\
\text { with poly }(n) \text { rounds }
\end{array} \\
S_{2}^{1}(\text { bit }) \vdash S C E\left(S A T, n^{k}\right) \Rightarrow & S C E\left(S A T, n^{k}\right) \in P
\end{array}
$$

Proposition [Atserias-Krajíček (private communication)]

\exists one-way permutation secure against p-size circuits
$\exists h \in E$ hard on average for subexponential circuits

$$
\Rightarrow
$$

$\operatorname{SCE}\left(S A T, n^{k}\right) \in \mathrm{P}$ and
$\operatorname{LB}\left(S A T, n^{k}\right)$ has an S-T protocol with 1 round (1 advice of T)

Theories weaker than S_{2}^{1} (bit)

$T_{N C^{1}}$: true universal theory in the language containing names for all uniform $N C^{1}$ algorithms

Theorem (KPT)

$T_{N C 1} \vdash \exists y A(x, y)$ for open formula $A \Rightarrow \exists$ function f in uniform $N C^{1}$ s.t. $A(x, f(x))$ holds for any x.
$T_{N C^{1}} \vdash \exists y \forall z A(x, y, z)$ for open formula $A \Rightarrow \exists$ functions f_{1}, \ldots, f_{k} in uniform $N C^{1}$ s.t.
$T_{N C^{1}} \vdash A\left(x, f_{1}(x), z_{1}\right) \vee A\left(x, f_{2}\left(x, z_{1}\right), z_{2}\right) \vee \ldots \vee A\left(x, f\left(x, z_{1}, \ldots, z_{k-1}\right), z_{k}\right)$

Theories weaker than S_{2}^{1} (bit)

$T_{N C^{1}}$: true universal theory in the language containing names for all uniform $N C^{1}$ algorithms

Theorem (KPT)

$T_{N C 1} \vdash \exists y A(x, y)$ for open formula $A \Rightarrow \exists$ function f in uniform $N C^{1}$ s.t. $A(x, f(x))$ holds for any x.
$T_{N C^{1}} \vdash \exists y \forall z A(x, y, z)$ for open formula $A \Rightarrow \exists$ functions f_{1}, \ldots, f_{k} in uniform $N C^{1}$ s.t.
$T_{N C^{1}} \vdash A\left(x, f_{1}(x), z_{1}\right) \vee A\left(x, f_{2}\left(x, z_{1}\right), z_{2}\right) \vee . . \vee A\left(x, f\left(x, z_{1}, \ldots, z_{k-1}\right), z_{k}\right)$
$L B\left(S A T, n^{k}\right)$ has the form

$$
\exists y \forall z A(x, y, z)
$$

for an open formula A in the language of $T_{N C^{1}}$

Another formalization of circuit lower bounds

$L B_{2}\left(S A T, n^{k}\right) \equiv$

$$
\forall 1^{n}>n_{0} \forall C
$$

$$
\exists y, a, w|a|<|y|=n,|w| \leq n^{k}
$$

$$
\forall z,|z|<|y|
$$

$$
\neg \operatorname{Circ}(C, y, w) \vee
$$

$$
(C(y ; w)=0 \wedge \operatorname{SAT}(y, a)) \vee(C(y ; w)=1 \wedge \neg \operatorname{SAT}(y, z))
$$

$\operatorname{Circ}(C, y, w) \equiv " C$ encodes a $|w|$-size circuit with $|y|$ inputs"

Another formalization of circuit lower bounds

$L B_{2}\left(S A T, n^{k}\right) \equiv$

$$
\forall 1^{n}>n_{0} \forall C
$$

$$
\exists y, a, w|a|<|y|=n,|w| \leq n^{k}
$$

$$
\forall z,|z|<|y|
$$

$$
\neg \operatorname{Circ}(C, y, w) \vee
$$

$$
(C(y ; w)=0 \wedge \operatorname{SAT}(y, a)) \vee(C(y ; w)=1 \wedge \neg S A T(y, z))
$$

$\operatorname{Circ}(C, y, w) \equiv " C$ encodes a $|w|$-size circuit with $|y|$ inputs"
$T_{N C^{1}} \vdash L B_{2}\left(S A T, n^{k}\right) \Rightarrow$
$L B_{2}\left(S A T, n^{k}\right)$ has an $N C^{1}$ S-T protocol with $O(1)$ rounds i.e. the algorithm S is in uniform $N C^{1}$
and it outputs y, a and also computations w
T replies just with z 's

Theorem

$L B_{2}\left(S A T, n^{k+1}\right)$ has no $N C^{1} S$-T protocol with $O(1)$ rounds unless $\operatorname{SIZE}\left(n^{k}\right) \subseteq N C^{1}$. Therefore, $T_{N C^{1}} \nvdash L B_{2}\left(S A T, n^{k+1}\right)$ unless $\operatorname{SIZE}\left(n^{k}\right) \subseteq N C^{1}$.

Theorem

$L B_{2}\left(S A T, n^{k+1}\right)$ has no $N C^{1} S$ - T protocol with $O(1)$ rounds unless $\operatorname{SIZE}\left(n^{k}\right) \subseteq N C^{1}$. Therefore, $T_{N C^{1}} \nvdash L B_{2}\left(S A T, n^{k+1}\right)$ unless $\operatorname{SIZE}\left(n^{k}\right) \subseteq N C^{1}$.

$$
\begin{aligned}
& T_{N C^{1}} \vdash L B\left(S A T, n^{k}\right) \Rightarrow \\
& \quad L B\left(S A T, n^{k}\right) \text { has an } N C^{1} \mathrm{~S}-\mathrm{T} \text { protocol with } O(1) \text { rounds }
\end{aligned}
$$ i.e. S is uniform $N C^{1}$ and it does not need to output w^{\prime} s

Theorem

$L B_{2}\left(S A T, n^{k+1}\right)$ has no $N C^{1} S$-T protocol with $O(1)$ rounds unless $\operatorname{SIZE}\left(n^{k}\right) \subseteq N C^{1}$. Therefore, $T_{N C^{1}} \nvdash L B_{2}\left(S A T, n^{k+1}\right)$ unless $\operatorname{SIZE}\left(n^{k}\right) \subseteq N C^{1}$.

$$
\begin{aligned}
& T_{N C^{1}} \vdash L B\left(S A T, n^{k}\right) \Rightarrow \\
& L B\left(S A T, n^{k}\right) \text { has an } N C^{1} \mathrm{~S}-\mathrm{T} \text { protocol with } O(1) \text { rounds } \\
& \text { i.e. } \mathrm{S} \text { is uniform } N C^{1} \text { and it does not need to output } w \text { 's }
\end{aligned}
$$

Theorem

$L B\left(S A T, n^{2 k c}\right)$ has no $N C^{1} S$ - T protocol with $O(1)$ rounds and $T_{N C^{1}} \nvdash L B\left(S A T, n^{2 k c}\right)$ for any $k \geq 1, c \geq 4$ unless $\forall f \in \operatorname{SIZE}\left(n^{k}\right)$ can be approximated by formulas F_{n} of subexponential size $2^{O\left(n^{2 / c}\right)}$ with subexponential advantage

$$
P_{x}\left[F_{n}(x)=f(x)\right]<1 / 2+1 / 2^{O\left(n^{2 / c}\right)}
$$

see karlin.mff.cuni.cz/~pich
$N C^{1}$ S-T protocol with $O(1)$ rounds for $L B\left(S A T, n^{2 k c}\right)$
\Rightarrow
$N C^{1}$ S-T protocol finding errors of circuits of the form $f\left(x \mid J_{y}\right)$ where $f \in \operatorname{SIZE}\left(n^{k}\right), x \in\{0,1\}^{n^{c}}$ and $x \mid J_{y}$ is a suitable map:

$$
y \in\{0,1\}^{n} \mapsto x^{\prime} \in\{0,1\}^{n^{c / 2}} \text { for } x^{\prime} \subseteq x
$$

$\left(f\left(x \mid J_{y}\right)\right.$ is an $n^{2 k c}$-size circuit with n inputs $\left.y\right)$
\Rightarrow
$\exists y_{1}, a_{1}, \ldots, y_{l}, a_{l}$ s.t. S outputs them for many (cca $1 / 2^{O(n)}$ of all) x 's
\Rightarrow
using $y_{1}, a_{1}, \ldots, y_{l}, a_{l}$ as nonuniform advice we can simulate the $N C^{1}$ S-T protocol by an $N C^{1}$ circuit on many inputs and approximate f

