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Motivation
Feasible witnessing of existential quantifiers
in complexity-theoretic statements

e.g. Can it happen that P 6=NP but there is no efficient method how to
witness errors of p-time algorithms attempting to solve NP problems?

p-time witnessing
”⇔ ”

provability in
of ∃ quantifiers S1

2
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Language

Lbit : 0, S ,+, ·,=,≤

bx/2c
|x | (the length of the binary representation of x)
# (x#y = 2|x |·|y |)
xi (the i-th bit of the binary representation of x)

Bounded quantifiers: ∃x , x ≤ t; ∀x , x ≤ t
Sharply bounded quantifiers: ∃x , x ≤ |t|; ∀x , x ≤ |t|

(t is a term not containing x)

Σb
0(bit) (=Πb

0(bit)) : Lbit-formulas with all quantifiers sharply bounded
Σb
i+1(bit) formulas: constructed from Πb

i (bit) by sharply bounded and
existential bounded quantifiers

Πb
i+1(bit) formulas: constructed from Σb

i (bit) by sharply bounded and
universal bounded quantifiers
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Circuit lower bounds

k , n0 constants

LB(SAT , nk) ≡
∀1n > n0 (shortcut for ∀m, n such that m > n0 ∧ |m| = n)
∀C (circuit with n inputs)
∃y (formula), a (assignment of y) |a| < |y | = n
∀w (computation of C ), z (assignment of y) |w | ≤ nk , |z | < |y |

[Comp(C , y ,w)→
(C (y ;w) = 1 ∧ ¬SAT (y , z)) ∨ (C (y ;w) = 0 ∧ SAT (y , a))]

Comp(C , y ,w) ≡ ”w is computation of circuit C on input y”
SAT (y , z) ≡ ”3-CNF formula y is satisfied by assignment z”
C (y ;w) = 1/0 ≡ ”w is accepting/rejecting computation of C on input y”

Comp,SAT ,C (y ;w) = 1/0 are Σb
0(bit) ⇒ LB(SAT , nk) is Σb

2(bit)
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Theory S1
2 (bit)

axioms: BASIC(bit) (capturing basic properties of symbols of Lbit)
polynomial induction for Σb

1(bit)-formulas A:

A(0) ∧ ∀x(A(bx/2c)→ A(x))→ ∀xA(x)

Theorem (Buss ’86)

S1
2 (bit) ` ∃yA(x , y) for Σb

0(bit)-formula A ⇒ ∃ p-time function f s.t.
A(x , f (x)) holds for any x.

Theorem (Kraj́ıček ’93)

S1
2 (bit) ` ∃y∀z ≤ tA(x , y , z) for Σb

0(bit)-formula A ⇒ ∃ p-time algorithm
S s.t. for any x

either ∀z ≤ tA(x ,S(x), z) or for some z1 ¬A(x ,S(x), z1)
In the latter case

either ∀z ≤ tA(x ,S(x , z1), z) or for some z2 ¬A(x ,S(x , z1), z2)
...

after k ≤ poly(n) rounds ∀z ≤ tA(x ,S(x , z1, ..., zk), z)
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Equivalent formalizations of LB(SAT , nk)

e.g.

SCE (SAT , nk) ≡
∀1n > n0∀C ∃y , a |a| < |y | = n ∀w , z |w | ≤ nk , |z | < |y |

SAT (y , a) ∧ (C (y ;w) = z → ¬SAT (y , z))
for n0, k constants

Proposition

S1
2 (bit) proves

SCE (SAT , n2k)→ LB(SAT , nk)
LB(SAT , n2k)→ SCE (SAT , nk)

where n0 is arbitrary but the same constant in the assumption and the
conclusion of each implication
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LB(SAT , nk) ∈ P ≡
∃ p-time algorithm S s.t. for any nk -size circuit C S outputs y , a
s.t. LB(C , y , a):

C (y) = 0 ∧ SAT (y , a) or C (y) = 1 ∧ ∀z¬SAT (y , z)

LB(SAT , nk) has an S-T protocol with l rounds ≡
∃ p-time algorithm S s.t. for any function T:

S T
nk -size circuit C −→ y1, a1 s.t. either LB(C , y1, a1)

or otherwise
w1, z1 certifying ¬LB(C , y1, a1) ←−

having C ,w1, z1 −→ y2, a2 s.t. either LB(C , y2, a2)
or otherwise

w2, z2 certifying ¬LB(C , y2, a2) ←−
...

C ,w1, z1, ...wl , zl −→ y , a s.t. LB(C , y , a)
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Proposition

S1
2 (bit) ` LB(SAT , nk) ⇒ LB(SAT , nk) has an S-T protocol

with poly(n) rounds

S1
2 (bit) ` SCE (SAT , nk)⇒ SCE (SAT , nk) ∈ P

Proposition [Atserias-Kraj́ıček (private communication)]

∃ one-way permutation secure against p-size circuits
∃h ∈ E hard on average for subexponential circuits

⇒
SCE (SAT , nk) ∈P and
LB(SAT , nk) has an S-T protocol with 1 round (1 advice of T)
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Theories weaker than S1
2 (bit)

TNC1 : true universal theory in the language containing names for all
uniform NC 1 algorithms

Theorem (KPT)

TNC1 ` ∃yA(x , y) for open formula A ⇒ ∃ function f in uniform NC 1 s.t.
A(x , f (x)) holds for any x.

TNC1 ` ∃y∀zA(x , y , z) for open formula A ⇒ ∃ functions f1, ..., fk in
uniform NC 1 s.t.
TNC1 ` A(x , f1(x), z1) ∨ A(x , f2(x , z1), z2) ∨ .. ∨ A(x , f (x , z1, ..., zk−1), zk)

LB(SAT , nk) has the form

∃y∀zA(x , y , z)

for an open formula A in the language of TNC1
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Another formalization of circuit lower bounds

LB2(SAT , nk) ≡
∀1n > n0∀C
∃y , a,w |a| < |y | = n, |w | ≤ nk

∀z , |z | < |y |
¬Circ(C , y ,w)∨

(C (y ;w) = 0 ∧ SAT (y , a)) ∨ (C (y ;w) = 1 ∧ ¬SAT (y , z))

Circ(C , y ,w) ≡ ”C encodes a |w |-size circuit with |y | inputs”

TNC1 ` LB2(SAT , nk)⇒
LB2(SAT , nk) has an NC 1 S-T protocol with O(1) rounds
i.e. the algorithm S is in uniform NC 1

and it outputs y , a and also computations w
T replies just with z ’s
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Theorem

LB2(SAT , nk+1) has no NC 1 S-T protocol with O(1) rounds unless
SIZE (nk) ⊆ NC 1. Therefore, TNC1 6` LB2(SAT , nk+1) unless
SIZE (nk) ⊆ NC 1.

TNC1 ` LB(SAT , nk)⇒
LB(SAT , nk) has an NC 1 S-T protocol with O(1) rounds
i.e. S is uniform NC 1 and it does not need to output w ’s

Theorem

LB(SAT , n2kc) has no NC 1 S-T protocol with O(1) rounds and
TNC1 6` LB(SAT , n2kc) for any k ≥ 1, c ≥ 4 unless

∀f ∈ SIZE (nk) can be approximated by formulas Fn of subexponential size

2O(n2/c ) with subexponential advantage

Px [Fn(x) = f (x)] < 1/2 + 1/2O(n2/c )

see karlin.mff.cuni.cz/∼pich
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NC 1 S-T protocol with O(1) rounds for LB(SAT , n2kc)
⇒

NC 1 S-T protocol finding errors of circuits of the form f (x |Jy ) where

f ∈ SIZE (nk), x ∈ {0, 1}nc and x |Jy is a suitable map:

y ∈ {0, 1}n 7→ x ′ ∈ {0, 1}nc/2 for x ′ ⊆ x

(f (x |Jy ) is an n2kc -size circuit with n inputs y)

⇒

∃y1, a1, ..., yl , al s.t. S outputs them for many (cca 1/2O(n) of all) x ’s

⇒

using y1, a1, ..., yl , al as nonuniform advice we can simulate the NC 1 S-T
protocol by an NC 1 circuit on many inputs and approximate f
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