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What is Ay—definability ?

Major open problem

Find a "simple" artithmetical relation

NOT Ag—definable
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Exemple

z=x

y=2Nz=xxandy=3Az=x.x.xand ...
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What is Ay—definability ?

Open exemple

z is the n-th prime number

IS NOT KNOWN TO BE Ag—definable



A new Ay—definable relation and a standard method

Let d and ¢ be integers, ¢ # 0. The Dedekind sum is defined by

w093 ((5) (%))

where ((x)) =0 if x € Z, else x — [x] — 3.
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A new Ay—definable relation and a standard method

s(d, c) is a rational number, but

12c x s(d, c) is a rational integer.

o1
s(d,c):c_1(4cd—2d—30)—1 |9
ce="|c

12¢

n—



A new Ay—definable relation and a standard method

Theorem : 12¢ x s(d, ¢) is Ap—definable.



A new Ay—definable relation and a standard method

Lemma (Ph. Barkan, 1977)

1 d+d 'modc <X .
(—3 7—2(—1)@

where (a;)o<i</ is the sequence of the continued fraction deve

lopment
d
a + P m—



A new Ay—definable relation and a standard method

Lemma (Woods, 1981)

i=g(x)
z= Y f(i,x)is Ag—definable provided

i—
e the gr%phs of f(i,x) and g(x) are Ay— definable

e f is polynomially bounded

e g is polylogarithmicaly bounded (i.e. there exists a polyno-
mial function v with positive integer coefficients, such that
9(x) < ¥(lloga(x1)). ... Lloga(x)]))



A new Ay—definable relation and a standard method

Lemma (H.-A. E. 2010)

Let ¢ and d be two positive integers. The sequence of the coef-
ficients (a;(d, ¢))o<i<r(a,c) Of the continued fraction development
of ¢ is Ag—definable.
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Main result



Generalization of Dedekind sum

Let us consider now the following generalization known (?) as
the Rademacher-Dieter-Knuth-Dedekind sum :

o3 ((9) (<))

where u € Z.




Generalization of Dedekind sum

ru(d, c) is a rational number, but
12c¢ x ry(d, c) is a rational integer.

Theorem : 12¢ x r,(d, ¢) is Ag—definable.



Generalization of Dedekind sum

Reciprocity law (U. Dieter, 1959)
ru(d,c)+ry(c,d) = 11—2 (Z’ + g + HGCW — BL%J — 3e(d, u))

ford >u>0andd>c > 0ande(d,u) =0if u>0and
u=0modc,else e(c,u) =1.



Generalization of Dedekind sum
n=-c rn=d U=u

Euclidean algorithm

ligo =1T; mod ligA Uit1 = U mod Figq
I uj
aj = [-] Bi=l75]

N1 =10 U1 = Bi-1h + 4



Generalization of Dedekind sum

Po = & p1 = apay + 1 Qo =1

QiPi-1 + Pi-2 = Pi

@iQi—1 + Qi—2 = q;

01 =&



Generalization of Dedekind sum

Algorithm (D. E. Knuth, 1977)

j=1-1

12¢ x ry(d,c) =c¢ ( (—1Y (aj — 68 — Se(rj+1,u,-)))

J=0

j=1-1
+ ( ~1)""p/+6 Z 5/ Uj+u]+1)pj+1)



Generalization of Dedekind sum

=11
12¢ x ry(d,c) = ¢ ( > (1Y (o — 88 - Be(rj+1,uj)))

j=0

j=1-1
(d+ “'p+6 Z Bj uj + U/+1)p/+1)



Generalization of Dedekind sum

=11
12¢ x ry(d,c) = ¢ ( Z (—1Y (aj — 68 — 3e(rj+1,u,-)))
=

j=1-1
<d+ “'p+6 Z Bj uj + U/+1)pj+1)
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Generalization of Dedekind sum

The idea is to code (/3j)o<j</ With (T'y,2) such that

I

L Ep— ﬁO +

2 Br+ —=
B

The code is polynomially bounded :
N <udandls < d.



Generalization of Dedekind sum

The idea is to code (/3j)o<j</ With (T'y,2) such that

[

— = 50 +

2 Br+ —=
B

The decoding function «;(I'1, 2) is rudimentary.



Generalization of Dedekind sum
z = (3 is definned by

(M) cug 3(M2) g 3 (M3) oy (2 = y(T1,T2)) A

k=i
<VI (Fg + ) (U V) < r,))
k=11

and simillary for z = u;.



Reciprocity laws

RL schema :
f(a,b,X)=f(a— b,b,X)ifa>b
f(a,0,X) = g(a,x)

f(a, b, X) = h(f(b,a,X),a,b,X)

f(a,b,X) < poly(a, b, X)??

defines f from g and h with N as domain and codomain.



Reciprocity laws

summing RL schema :
( f(a,b,X)=f(a—b,b,X)ifa>b
f(a,0,X) = 9(a,X)

f(a, b, X) + f(b,a, X) = h(a, b, X)

h(a, b, X) < poly(a, b, X)

defines f from g and h with N as domain and codomain.



Reciprocity laws

Proposition : The set of rudimentary functions is closed under
the RL summing schema.



Reciprocity laws

Proposition : The set of rudimentary functions is closed under
the RL summing schema.

Proof :
j=I

f(a, b, %) = > (~1Y h(ri1, 1, %) + (—1)'g(n, X)
j=1
nh=a rn=>b Euclidean algorithm

lite = rjmod rjyq -1 =10

rn = gcd(a, b)



Reciprocity laws

Recip. Law log. long classical
pol. bounded pol bounded
schema rec. schema rec. schema
complete ? ? ?
sum weakened closed closed equiv. counting




Reciprocity laws

Recip. Law log. long classical
pol. bounded pol bounded
schema rec. schema rec. schema
complete — |« — || «
sum weakened closed closed equiv. counting




Conclusion and further work

More generalization of Dedekind sum

k

seoa-£(2) (%)

=
Il



Conclusion and further work

Reciprocity (Rademacher, 1954)

s(a,b,c) + s(b,c,a) + s(c,a,b) =



Conclusion and further work

Conjecture : it is A} definable



