Reciprocity laws and Δ_{0}-definability

Henri-Alex Esbelin

Clermont-Ferrand Universities
JAF 32, Athens

Plan
-What is Δ_{0}-definability?

Plan

- What is Δ_{0}-definability?
- Dedekind sums are Δ_{0}-definable

Plan

-What is Δ_{0}-definability?

- Dedekind sums are Δ_{0}-definable
- Rademacher-Dieter-Knuth-Dedekind sums are Δ_{0}-definable

Plan

-What is Δ_{0}-definability?

- Dedekind sums are Δ_{0}-definable
- Rademacher-Dieter-Knuth-Dedekind sums are Δ_{0}-definable
- Reciprocity schema

Plan

-What is Δ_{0}-definability?

- Dedekind sums are Δ_{0}-definable
- Rademacher-Dieter-Knuth-Dedekind sums are Δ_{0}-definable
- Reciprocity schema
- Conclusion

What is Δ_{0}-definability?

x is not prime nor 0 nor 1
$(\exists u) \quad(\exists v) \quad(x=u v) \wedge(u \neq x) \wedge(u \neq x)$

What is Δ_{0}-definability?

x is not prime nor 0 nor 1

$$
(\exists u)_{u<x}(\exists v)_{v<x}(x=u v) \wedge(u \neq x) \wedge(v \neq x)
$$

What is Δ_{0}-definability?

Major open problem

Find a "simple" artithmetical relation
NOT Δ_{0}-definable

What is Δ_{0}-definability?

Exemple

$$
z=x^{y}
$$

What is Δ_{0}-definability?

Exemple

$$
z=x^{y}
$$

$$
y=2 \wedge z=x \cdot x \text { and } y=3 \wedge z=x \cdot x \cdot x \text { and } \ldots
$$

What is Δ_{0}-definability?

Exemple

$$
z=x^{x}
$$

IS Δ_{0}-definable

What is Δ_{0}-definability?

Open exemple
z is the n-th prime number
IS NOT KNOWN TO BE Δ_{0}-definable

A new Δ_{0}-definable relation and a standard method

Let d and c be integers, $c \neq 0$. The Dedekind sum is defined by

$$
s(d, c)=\sum_{k=1}^{k=|c|}\left(\left(\frac{k}{c}\right)\right)\left(\left(\frac{k d}{c}\right)\right)
$$

where $((x))=0$ if $x \in Z$, else $x-[x]-\frac{1}{2}$.

A new Δ_{0}-definable relation and a standard method

$s(d, c)$ is a rational number, but
$12 c \times s(d, c)$ is a rational integer.

A new Δ_{0}-definable relation and a standard method

$s(d, c)$ is a rational number, but
$12 c \times s(d, c)$ is a rational integer.

$$
s(d, c)=\frac{c-1}{12 c}(4 c d-2 d-3 c)-\frac{1}{c} \sum_{n=1}^{c-1} n\left\lfloor\frac{d n}{c}\right\rfloor
$$

A new Δ_{0}-definable relation and a standard method

Theorem : $12 c \times s(d, c)$ is Δ_{0}-definable.

A new Δ_{0}-definable relation and a standard method

Lemma (Ph. Barkan, 1977)

$$
s(d, c)=\frac{1}{12}\left(-3+\frac{d+d^{-1} \bmod c}{c}-\sum_{i=1}^{i=r}(-1)^{i} a_{i}\right)
$$

where $\left(a_{i}\right)_{0 \leq i \leq r}$ is the sequence of the continued fraction development

$$
\frac{d}{c}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots+\frac{1}{a_{r}}}}
$$

A new Δ_{0}-definable relation and a standard method

Lemma (Woods, 1981)
$z=\sum_{i=0}^{i=g(\mathbf{x})} f(i, \mathbf{x})$ is Δ_{0}-definable provided

- the graphs of $f(i, \mathbf{x})$ and $g(\mathbf{x})$ are Δ_{0} - definable
- f is polynomially bounded
- g is polylogarithmicaly bounded (i.e. there exists a polynomial function ψ with positive integer coefficients, such that $\left.g(\mathbf{x}) \leq \psi\left(\left\lfloor\log _{2}\left(x_{1}\right)\right\rfloor, \ldots,\left\lfloor\log _{2}\left(x_{k}\right)\right\rfloor\right)\right)$

A new Δ_{0}-definable relation and a standard method

Lemma (H.-A. E. 2010)
Let c and d be two positive integers. The sequence of the coefficients $\left(a_{i}(d, c)\right)_{0 \leq i \leq r(d, c)}$ of the continued fraction development of $\frac{d}{c}$ is Δ_{0}-definable.

Generalization of Dedekind sum

Main result

Generalization of Dedekind sum

Let us consider now the following generalization known (?) as the Rademacher-Dieter-Knuth-Dedekind sum :

$$
r_{u}(d, c)=\sum_{k=1}^{k=|c|}\left(\left(\frac{k}{c}\right)\right)\left(\left(\frac{k d+u}{c}\right)\right)
$$

where $u \in Z$.

Generalization of Dedekind sum

$r_{u}(d, c)$ is a rational number, but

$$
12 c \times r_{u}(d, c) \text { is a rational integer. }
$$

Theorem : $12 c \times r_{u}(d, c)$ is Δ_{0}-definable.

Generalization of Dedekind sum

Reciprocity law (U. Dieter, 1959)
$r_{u}(d, c)+r_{u}(c, d)=\frac{1}{12}\left(\frac{d}{c}+\frac{c}{d}+\frac{1+6\lfloor u\rfloor\lceil u\rceil}{c d}-6\left\lfloor\frac{u}{c}\right\rfloor-3 e(d, u)\right)$
for $d>u>0$ and $d \geq c>0$ and $e(d, u)=0$ if $u>0$ and $u \equiv 0 \bmod c$, else $e(c, u)=1$.

Generalization of Dedekind sum

$$
r_{0}=c \quad r_{1}=d \quad u_{0}=u
$$

Euclidean algorithm
$r_{i+2}=r_{i} \bmod r_{i+1}$
$u_{i+1}=u_{i} \bmod r_{i+1}$
$\alpha_{i}=\left\lfloor\frac{r_{i}}{r_{i+1}}\right\rfloor$
$\beta_{i}=\left\lfloor\frac{u_{i}}{r_{i+1}}\right\rfloor$
$r_{l-1}=\alpha_{l-1} r_{l}$
$u_{I-1}=\beta_{I-1} r_{I}+u_{I}$

Generalization of Dedekind sum

$$
\begin{array}{llll}
p_{0}=a_{0} & p_{1}=a_{0} a_{1}+1 & q_{0}=1 & q_{1}=a_{1} \\
\alpha_{i} p_{i-1}+p_{i-2}=p_{i} & \alpha_{i} q_{i-1}+q_{i-2}=q_{i} &
\end{array}
$$

Generalization of Dedekind sum

Algorithm (D. E. Knuth, 1977)

$$
\begin{gathered}
12 c \times r_{u}(d, c)=c\left(\sum_{j=0}^{j=l-1}(-1)^{j}\left(\alpha_{j}-6 \beta_{j}-3 e\left(r_{j+1}, u_{j}\right)\right)\right) \\
+\left(d+(-1)^{l-1} p_{l}+6 \sum_{j=0}^{j=l-1}(-1)^{j} \beta_{j}\left(u_{j}+u_{j+1}\right) p_{j+1}\right)
\end{gathered}
$$

Generalization of Dedekind sum

$$
\begin{gathered}
12 c \times r_{u}(d, c)=c\left(\sum_{j=0}^{j=l-1}(-1)^{j}\left(\alpha_{j}-6 \beta_{j}-3 e\left(r_{j+1}, u_{j}\right)\right)\right) \\
+\left(d+(-1)^{l-1} p_{l}+6 \sum_{j=0}^{j=l-1}(-1)^{j} \beta_{j}\left(u_{j}+u_{j+1}\right) p_{j+1}\right)
\end{gathered}
$$

Generalization of Dedekind sum

$$
\begin{gathered}
12 c \times r_{u}(d, c)=c\left(\sum_{j=0}^{j=l-1}(-1)^{j}\left(\alpha_{j}-6 \beta_{j}-3 e\left(r_{j+1}, u_{j}\right)\right)\right) \\
+\left(d+(-1)^{l-1} p_{l}+6 \sum_{j=0}^{j=l-1}(-1)^{j} \beta_{j}\left(u_{j}+u_{j+1}\right) p_{j+1}\right)
\end{gathered}
$$

Generalization of Dedekind sum

The idea is to code $\left(\beta_{j}\right)_{0 \leq j \leq 1}$ with $\left(\Gamma_{1}, \Gamma_{2}\right)$ such that

$$
\frac{\Gamma_{1}}{\Gamma_{2}}=\beta_{0}+\frac{1}{\beta_{1}+\frac{\ldots}{\cdots+\frac{1}{\beta_{l-1}}}}
$$

Generalization of Dedekind sum

The idea is to code $\left(\beta_{j}\right)_{0 \leq j \leq I}$ with $\left(\Gamma_{1}, \Gamma_{2}\right)$ such that

$$
\frac{\Gamma_{1}}{\Gamma_{2}}=\beta_{0}+\frac{1}{\beta_{1}+\frac{\ldots}{\ldots+\frac{1}{\beta_{l-1}}}}
$$

The code is polynomially bounded :
$\Gamma_{1}<u d$ and $\Gamma_{2}<d$.

Generalization of Dedekind sum

The idea is to code $\left(\beta_{j}\right)_{0 \leq j \leq I}$ with $\left(\Gamma_{1}, \Gamma_{2}\right)$ such that

$$
\frac{\Gamma_{1}}{\Gamma_{2}}=\beta_{0}+\frac{1}{\beta_{1}+\frac{\ldots}{\ldots+\frac{1}{\beta_{l-1}}}}
$$

The decoding function $\alpha_{j}\left(\Gamma_{1}, \Gamma_{2}\right)$ is rudimentary.

Generalization of Dedekind sum

$z=\beta_{j}$ is definned by

$$
\begin{gathered}
\exists\left(\Gamma_{1}\right)_{<u d} \exists\left(\Gamma_{2}\right)_{<d} \exists\left(\Gamma_{3}\right)_{<u}\left(z=\alpha_{j}\left(\Gamma_{1}, \Gamma_{2}\right)\right) \wedge \\
\left(\forall i\left(\Gamma_{3}+\sum_{k=l-1}^{k=i} \alpha_{j}(u, v) r_{i+1}<r_{i}\right)\right)
\end{gathered}
$$

and simillary for $z=u_{j}$.

Reciprocity laws

RL schema :

$$
\left\{\begin{array}{l}
f(a, b, \vec{x})=f(a-b, b, \vec{x}) \text { if } \mathrm{a}>\mathrm{b} \\
f(a, 0, \vec{x})=g(a, \vec{x}) \\
f(a, b, \vec{x})=h(f(b, a, \vec{x}), a, b, \vec{x}) \\
f(a, b, \vec{x}) \leq p o l y(a, b, \vec{x}) ? ?
\end{array}\right.
$$

defines f from g and h with N as domain and codomain.

Reciprocity laws

summing RL schema :

$$
\left\{\begin{array}{l}
f(a, b, \vec{x})=f(a-b, b, \vec{x}) \text { if } \mathrm{a}>\mathrm{b} \\
f(a, 0, \vec{x})=g(a, \vec{x}) \\
f(a, b, \vec{x})+f(b, a, \vec{x})=h(a, b, \vec{x}) \\
\mathrm{h}(a, b, \vec{x}) \leq \operatorname{poly}(a, b, \vec{x})
\end{array}\right.
$$

defines f from g and h with N as domain and codomain.

Reciprocity laws

Proposition : The set of rudimentary functions is closed under the RL summing schema.

Reciprocity laws

Proposition : The set of rudimentary functions is closed under the RL summing schema.

Proof:
$f(a, b, \vec{x})=\sum_{j=1}^{j=1}(-1)^{j+1} h\left(r_{j+1}, r_{j}, \vec{x}\right)+(-1)^{\prime} g\left(r_{l}, \vec{x}\right)$
$r_{0}=a \quad r_{1}=b \quad$ Euclidean algorithm
$r_{i+2}=r_{j} \bmod r_{i+1} \quad r_{l-1}=\alpha_{l-1} r_{l}$
$r_{l}=\operatorname{gcd}(a, b)$

Reciprocity laws

	Recip. Law	log. long pol. bounded rec. schema	classical pol bounded rec. schema
complete	$?$	$?$	$?$
sum weakened	closed	closed	equiv. counting

Reciprocity laws

	Recip. Law	log. long pol. bounded rec. schema	classical pol bounded rec. schema
complete	\leftarrow	\leftarrow	\leftarrow
sum weakened	closed	closed	equiv. counting

Conclusion and further work

More generalization of Dedekind sum

$$
s(a, b, c)=\sum_{k=1}^{k=c}\left(\left(\frac{a k}{c}\right)\right)\left(\left(\frac{b k}{c}\right)\right)
$$

Conclusion and further work

Reciprocity (Rademacher, 1954)

$$
s(a, b, c)+s(b, c, a)+s(c, a, b)=\frac{1}{4}-\frac{1}{12}\left(\frac{c}{a b}+\frac{a}{b c}+\frac{b}{a c}\right)
$$

Conclusion and further work

Conjecture : it is Δ_{0}^{\sharp} definable

