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I The language for arithmetic LA is {0, 1,+,×, <}.
I A cut of a model of PA is a nonempty initial segment closed

under x 7→ x + 1.
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Indicators

Fix a countable arithmetically saturated M |= PA.

I An indicator Y : M2 → M is a definable “distance function”
that satisfies some nicety conditions.

I Y (x , y) > N means “y is much bigger than x”.

I Y also represents desirable closure conditions for a cut.

Example

Y (x , y) =
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Example
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Fix an indicator Y on M.

Definition
A Y -cut is a cut such that for all x , y ∈ M,

x ∈ I and Y (x , y) ∈ N ⇒ y ∈ I .

The space C consists of all Y -cuts, and the basic open sets are

[[a, b]] = {I ∈ C : a ∈ I < b},

where a, b ∈ M.

Proposition (Kotlarski 1984)

C is homeomorphic to the Cantor space 2ω.
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Baire category

Definition
A subset of a topological space is comeagre if it includes
a countable intersection of dense open sets.
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Baire Category Theorem

Comeagre sets in C are dense.

Theorem (Kaye 2008)

There is a smallest one amongst the comeagre sets in C
that are invariant under the automorphisms of M.

Definition (Kaye 2008)

The set of generic cuts is this smallest comeagre set.
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Special cuts

I An automorphism of M is a bijection M → M that preserves
0, 1,+,×, <.

I For a cut I and c ∈ M,

Orb(I , c) = {J : (M, I , c) ∼= (M, J , c)}.

Definition
A cut I is special over c ∈ M if

Orb(I , c) ∩ [[a, b]] = {I }

for some [[a, b]] containing I .
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The opposite of being special

Definition
A cut I is special over c ∈ M if

Orb(I , c) ∩ [[a, b]] = {I }

for some [[a, b]] containing I .
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A cut I is not special over c ∈ M if and only if

Orb(I , c) ∩ [[a, b]] % {I }

for all [[a, b]] containing I .
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Theorem (Kaye–W 2010)

A Y -cut I is generic if and only if

Orb(I , c) ∩ [[u, v ]] 6= ∅ for all nonempty [[u, v ]] ⊆ [[a, b]]

for all c ∈ M and all small enough [[a, b]] containing I .

A generic cut can move about freely in its neighbourhood.
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Closedness under functions

Definitions

I A cut I is closed under F : M → M if ∀x ∈ I F (x) ∈ I .

I Let c ∈ M. A function F : M → M is definable over c if
there is ϕ(x , y , z) ∈ LA such that for all x , y ∈ M,

F (x) = y ⇔ M |= ϕ(x , y , c).

I For F ,G : M → M, we say that F dominates G on a cut I if
F (x) > G (x) for all large enough x ∈ I .

Example

Define Yk(x) = (min y)(Y (x , y) > k). Then a cut is a Y -cut
if and only if it is closed under Yk for all k ∈ N.
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Closing only under the indicator

Example

Define Yk(x) = (min y)(Y (x , y) > k). Then a cut is a Y -cut
if and only if it is closed under Yk for all k ∈ N.

Theorem (W)

A Y -cut I is generic if and only if the following hold.

(a) If F is a definable function M → M under which I is closed,
then F is dominated on I by Yk for some k ∈ N.

(b) For every c ∈ M, there exists b > I such that
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The theory of Y -cuts

(a) If F is a definable function M → M under which I is closed,
then F is dominated on I by Yk for some k ∈ N.

Definition
Lcut denotes the language consisting of

I the symbols in LA,

I one function symbol for each Skolem function in LA, and

definable function

I one new unary predicate symbol I.
PAY is the Lcut theory that consists of

I the axioms of PA,

I the definitions of the Skolem functions, and

I a scheme saying “I is a Y -cut”.

Normal Form Lemma
Every ∃ formula in Lcut is equivalent over PAY to

∃x ∈ I F (x , z̄) > I

for some Skolem function F .



The theory of Y -cuts

(a) If F is a definable function M → M under which I is closed,
then F is dominated on I by Yk for some k ∈ N.

Definition
Lcut denotes the language consisting of

I the symbols in LA,

I one function symbol for each Skolem function in LA, and

definable function

I one new unary predicate symbol I.
PAY is the Lcut theory that consists of

I the axioms of PA,

I the definitions of the Skolem functions, and

I a scheme saying “I is a Y -cut”.

Normal Form Lemma
Every ∃ formula in Lcut is equivalent over PAY to

∃x ∈ I F (x , z̄) > I

for some Skolem function F .



The theory of Y -cuts

(a) If F is a definable function M → M under which I is closed,
then F is dominated on I by Yk for some k ∈ N.

Definition
Lcut denotes the language consisting of

I the symbols in LA,

I one function symbol for each Skolem function in LA, and

definable function

I one new unary predicate symbol I.
PAY is the Lcut theory that consists of

I the axioms of PA,

I the definitions of the Skolem functions, and

I a scheme saying “I is a Y -cut”.

Normal Form Lemma
Every ∃ formula in Lcut is equivalent over PAY to

∃x ∈ I F (x , z̄) > I

for some Skolem function F .



The theory of Y -cuts

(a) If F is a definable function M → M under which I is closed,
then F is dominated on I by Yk for some k ∈ N.

Definition
Lcut denotes the language consisting of

I the symbols in LA,

I one function symbol for each Skolem function in LA, and

definable function

I one new unary predicate symbol I.
PAY is the Lcut theory that consists of

I the axioms of PA,

I the definitions of the Skolem functions, and

I a scheme saying “I is a Y -cut”.

Normal Form Lemma
Every ∃ formula in Lcut is equivalent over PAY to

∃x ∈ I F (x , z̄) > I

for some Skolem function F .



The theory of Y -cuts

(a) If F is a definable function M → M under which I is closed,
then F is dominated on I by Yk for some k ∈ N.

Definition
Lcut denotes the language consisting of

I the symbols in LA,

I one function symbol for each Skolem function in LA, and

definable function

I one new unary predicate symbol I.

PAY is the Lcut theory that consists of

I the axioms of PA,

I the definitions of the Skolem functions, and

I a scheme saying “I is a Y -cut”.

Normal Form Lemma
Every ∃ formula in Lcut is equivalent over PAY to

∃x ∈ I F (x , z̄) > I

for some Skolem function F .



The theory of Y -cuts

(a) If F is a definable function M → M under which I is closed,
then F is dominated on I by Yk for some k ∈ N.

Definition
Lcut denotes the language consisting of

I the symbols in LA,

I one function symbol for each Skolem function in LA, and

definable function

I one new unary predicate symbol I.
PAY is the Lcut theory that consists of

I the axioms of PA,

I the definitions of the Skolem functions, and

I a scheme saying “I is a Y -cut”.

Normal Form Lemma
Every ∃ formula in Lcut is equivalent over PAY to

∃x ∈ I F (x , z̄) > I

for some Skolem function F .



The theory of Y -cuts

(a) If F is a definable function M → M under which I is closed,
then F is dominated on I by Yk for some k ∈ N.

Definition
Lcut denotes the language consisting of

I the symbols in LA,

I one function symbol for each Skolem function in LA, and

definable function

I one new unary predicate symbol I.
PAY is the Lcut theory that consists of

I the axioms of PA,

I the definitions of the Skolem functions, and

I a scheme saying “I is a Y -cut”.

Normal Form Lemma
Every ∃ formula in Lcut is equivalent over PAY to

∃x ∈ I F (x , z̄) > I

for some Skolem function F .



The theory of Y -cuts

(a) If F is a definable function M → M under which I is closed,
then F is dominated on I by Yk for some k ∈ N.

Definition
Lcut denotes the language consisting of

I the symbols in LA,

I one function symbol for each Skolem function in LA, and

definable function

I one new unary predicate symbol I.
PAY is the Lcut theory that consists of

I the axioms of PA,

I the definitions of the Skolem functions, and

I a scheme saying “I is a Y -cut”.

Normal Form Lemma
Every ∃ formula in Lcut is equivalent over PAY to

∃x ∈ I F (x , z̄) > I

for some Skolem function F .



The theory of Y -cuts

(a) If F is a definable function M → M under which I is closed,
then F is dominated on I by Yk for some k ∈ N.

Definition
Lcut denotes the language consisting of

I the symbols in LA,

I one function symbol for each Skolem function in LA, and

definable function

I one new unary predicate symbol I.
PAY is the Lcut theory that consists of

I the axioms of PA,

I the definitions of the Skolem functions, and

I a scheme saying “I is a Y -cut”.

Normal Form Lemma
Every ∃ formula in Lcut is equivalent over PAY to

∃x ∈ I F (x , z̄) > I

for some Skolem function F .



The theory of Y -cuts

(a) If F is a definable function M → M under which I is closed,
then F is dominated on I by Yk for some k ∈ N.

Definition
Lcut denotes the language consisting of

I the symbols in LA,

I one function symbol for each Skolem function in LA, and

definable function

I one new unary predicate symbol I.
PAY is the Lcut theory that consists of

I the axioms of PA,

I the definitions of the Skolem functions, and

I a scheme saying “I is a Y -cut”.

Normal Form Lemma
Every ∃ formula in Lcut is equivalent over PAY to

∃x ∈ I F (x , z̄) > I

for some Skolem function F .



Existential closedness

Normal Form Lemma
Every ∃ formula in Lcut is equivalent over PAY to

∃x ∈ I F (x , z̄) > I

for some Skolem function F .

Definition
An existentially closed model of a theory T is a model M |= T
such that for all ∃ formula ϕ(z̄) and all c̄ ∈M,

if there is a model of T extending M satisfying ϕ(c̄),
then M |= ϕ(c̄).

algebraically closed

Theorem (Kaye–W 2010 & 2013+, W)

A Y -cut I is generic if and only if the following hold.

(a) (M, I ) is an existentially closed model of PAY .

(b) For every c ∈ M,{
(min x > I )(ϕ(x , c)) : ϕ ∈ LA for which the min exists

}
is bounded below in M \ I .
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Recursive saturation and codedness of types

Proposition (W)

No existentially closed (M, I ) |= PAY is ∀1-recursively saturated.

Proof
Because

{
k ∈ M : (M, I ) |= ∀x ∈ I Yk(x) ∈ I

}
= N.

Theorem (Kaye–W 2013+, W)

A Y -cut I is generic if and only if the following hold.

(a) (M, I ) is an existentially closed model of PAY .

(b) The ∃-type of c in (M, I ) is coded in M for every c ∈ M, i.e.,
for each c ∈ M, there is a definable set C in M such that

for all ∃ formulas ϕ(x) in Lcut,

pϕq ∈ C ⇔ (M, I ) |= ϕ(c).
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Conclusion

What generic cuts are

I Generic cuts can move about freely in its neighbourhood.

I There are no important changes near a generic cut.

Genericity of cuts can be characterized in terms of

I the topology,

I automorphisms,

I the functions under which the cut is closed, and

I existential closedness, definable points, saturation, etc.

Genericity is a robust notion!
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