The generic choice of a cut

Tin Lok Wong
Ghent University, Belgium

25 June, 2013
*My current appointment is funded by the John Templeton Foundation.

Cuts

Cuts

- The language for arithmetic \mathscr{L}_{A} is $\{0,1,+, \times,<\}$.

Cuts

- The language for arithmetic \mathscr{L}_{A} is $\{0,1,+, \times,<\}$.
- A cut of a model of PA is a nonempty initial segment closed under $x \mapsto x+1$.

Cuts

- The language for arithmetic \mathscr{L}_{A} is $\{0,1,+, \times,<\}$.
- A cut of a model of PA is a nonempty initial segment closed under $x \mapsto x+1$.
- \mathbb{N} is a cut of any nonstandard model of PA.

Cuts

- The language for arithmetic \mathscr{L}_{A} is $\{0,1,+, \times,<\}$.
- A cut of a model of PA is a nonempty initial segment closed under $x \mapsto x+1$.
- \mathbb{N} is a cut of any nonstandard model of PA.
- An element c of a model is nonstandard if $c>k$ for all $k \in \mathbb{N}$.

- The language for arithmetic \mathscr{L}_{A} is $\{0,1,+, \times,<\}$.
- A cut of a model of PA is a nonempty initial segment closed under $x \mapsto x+1$.
- \mathbb{N} is a cut of any nonstandard model of PA.
- An element c of a model is nonstandard if $c>k$ for all $k \in \mathbb{N}$.
- No proper cut is definable in \mathscr{L}_{A}.

Cuts

- The language for arithmetic \mathscr{L}_{A} is $\{0,1,+, \times,<\}$.
- A cut of a model of PA is a nonempty initial segment closed under $x \mapsto x+1$.
- \mathbb{N} is a cut of any nonstandard model of PA.
- An element c of a model is nonstandard if $c>k$ for all $k \in \mathbb{N}$.
- No proper cut is definable in \mathscr{L}_{A}.

Why cuts?

Cuts

- The language for arithmetic \mathscr{L}_{A} is $\{0,1,+, \times,<\}$.
- A cut of a model of PA is a nonempty initial segment closed under $x \mapsto x+1$.
- \mathbb{N} is a cut of any nonstandard model of PA.
- An element c of a model is nonstandard if $c>k$ for all $k \in \mathbb{N}$.
- No proper cut is definable in \mathscr{L}_{A}.

Why cuts?

- Model theory

Cuts

- The language for arithmetic \mathscr{L}_{A} is $\{0,1,+, \times,<\}$.
- A cut of a model of PA is a nonempty initial segment closed under $x \mapsto x+1$.
- \mathbb{N} is a cut of any nonstandard model of PA.
- An element c of a model is nonstandard if $c>k$ for all $k \in \mathbb{N}$.
- No proper cut is definable in \mathscr{L}_{A}.

Why cuts?

- Model theory
- Independence results

Cuts

- The language for arithmetic \mathscr{L}_{A} is $\{0,1,+, \times,<\}$.
- A cut of a model of PA is a nonempty initial segment closed under $x \mapsto x+1$.
- \mathbb{N} is a cut of any nonstandard model of PA.
- An element c of a model is nonstandard if $c>k$ for all $k \in \mathbb{N}$.
- No proper cut is definable in \mathscr{L}_{A}.

Why cuts?

- Model theory
- Independence results
- Nonstandard analysis

Cuts

- The language for arithmetic \mathscr{L}_{A} is $\{0,1,+, \times,<\}$.
- A cut of a model of PA is a nonempty initial segment closed under $x \mapsto x+1$.
- \mathbb{N} is a cut of any nonstandard model of PA.
- An element c of a model is nonstandard if $c>k$ for all $k \in \mathbb{N}$.
- No proper cut is definable in \mathscr{L}_{A}.

Why cuts?

- Model theory
- Independence results
- Nonstandard analysis
- Reverse mathematics

Generic cuts (Kaye 2008)

Generic cuts (Kaye 2008)

What do generic cuts look like?

Generic cuts (Kaye 2008)

> What do generic cuts look like?

Plan

- Topological definition
- The opposite of being special
- Functions under which the cut is closed
- Model theoretic properties

Indicators

Fix a countable arithmetically saturated $M \models \mathrm{PA}$.

Indicators

Fix a countable arithmetically saturated $M \models \mathrm{PA}$.

- An indicator $Y: M^{2} \rightarrow M$ is a definable "distance function" that satisfies some nicety conditions.

Indicators

Fix a countable arithmetically saturated $M \models \mathrm{PA}$.

- An indicator $Y: M^{2} \rightarrow M$ is a definable "distance function" that satisfies some nicety conditions.
- $Y(x, y)>\mathbb{N}$ means " y is much bigger than x ".

Indicators

Fix a countable arithmetically saturated $M \models \mathrm{PA}$.

- An indicator $Y: M^{2} \rightarrow M$ is a definable "distance function" that satisfies some nicety conditions.
- $Y(x, y)>\mathbb{N}$ means " y is much bigger than x ".
- Y also represents desirable closure conditions for a cut.

Indicators

Fix a countable arithmetically saturated $M \models \mathrm{PA}$.

- An indicator $Y: M^{2} \rightarrow M$ is a definable "distance function" that satisfies some nicety conditions.
- $Y(x, y)>\mathbb{N}$ means " y is much bigger than x ".
- Y also represents desirable closure conditions for a cut.

Example
$Y(x, y)=\left\lfloor\frac{y}{x}\right\rfloor$ defines an indicator.

Indicators

Fix a countable arithmetically saturated $M \models \mathrm{PA}$.

- An indicator $Y: M^{2} \rightarrow M$ is a definable "distance function" that satisfies some nicety conditions.
- $Y(x, y)>\mathbb{N}$ means " y is much bigger than x ".
- Y also represents desirable closure conditions for a cut.

Example
$Y(x, y)=\left\lfloor\frac{y}{x}\right\rfloor$ defines an indicator.

Indicators

Fix a countable arithmetically saturated $M \models \mathrm{PA}$.

- An indicator $Y: M^{2} \rightarrow M$ is a definable "distance function" that satisfies some nicety conditions.
- $Y(x, y)>\mathbb{N}$ means " y is much bigger than x ".
- Y also represents desirable closure conditions for a cut.

Example
$Y(x, y)=\left\lfloor\frac{y}{x}\right\rfloor$ defines an indicator.

The topological space

Fix an indicator Y on M.

Example
 $Y(x, y)=\left\lfloor\frac{y}{x}\right\rfloor$ defines an indicator.

The topological space

Fix an indicator Y on M.
Definition
A Y-cut is a cut such that for all $x, y \in M$,

$$
x \in I \quad \text { and } \quad Y(x, y) \in \mathbb{N} \quad \Rightarrow \quad y \in I
$$

Example
$Y(x, y)=\left\lfloor\frac{y}{x}\right\rfloor$ defines an indicator.

The topological space

Fix an indicator Y on M.
Definition
A Y-cut is a cut such that for all $x, y \in M$,

$$
x \in I \quad \text { and } \quad Y(x, y) \in \mathbb{N} \quad \Rightarrow \quad y \in I
$$

Example
$Y(x, y)=\left\lfloor\frac{y}{x}\right\rfloor$ defines an indicator.

The topological space

Fix an indicator Y on M.
Definition
A Y-cut is a cut such that for all $x, y \in M$,

$$
x \in I \quad \text { and } \quad Y(x, y) \in \mathbb{N} \quad \Rightarrow \quad y \in I
$$

The space \mathscr{C} consists of all Y-cuts,

The topological space

Fix an indicator Y on M.
Definition
A Y-cut is a cut such that for all $x, y \in M$,

$$
x \in I \quad \text { and } \quad Y(x, y) \in \mathbb{N} \quad \Rightarrow \quad y \in I
$$

The space \mathscr{C} consists of all Y-cuts, and the basic open sets are

$$
\llbracket a, b \rrbracket=\{I \in \mathscr{C}: a \in I<b\}
$$

where $a, b \in M$.

The topological space

Fix an indicator Y on M.
Definition
A Y-cut is a cut such that for all $x, y \in M$,

$$
x \in I \quad \text { and } \quad Y(x, y) \in \mathbb{N} \quad \Rightarrow \quad y \in I
$$

The space \mathscr{C} consists of all Y-cuts, and the basic open sets are

$$
\llbracket a, b \rrbracket=\{I \in \mathscr{C}: a \in I<b\}
$$

where $a, b \in M$.
Proposition (Kotlarski 1984)
\mathscr{C} is homeomorphic to the Cantor space 2^{ω}.

Baire category

Baire category

Definition

A subset of a topological space is comeagre if it includes a countable intersection of dense open sets.

Baire category

Definition

A subset of a topological space is comeagre if it includes a countable intersection of dense open sets.

Baire category

Definition

A subset of a topological space is comeagre if it includes a countable intersection of dense open sets.

Baire Category Theorem
Comeagre sets in \mathscr{C} are dense.

Baire category

Definition

A subset of a topological space is comeagre if it includes a countable intersection of dense open sets.

Baire Category Theorem
Comeagre sets in \mathscr{C} are dense.
Theorem (Kaye 2008)
There is a smallest one amongst the comeagre sets in \mathscr{C} that are invariant under the automorphisms of M.

Baire category

Definition

A subset of a topological space is comeagre if it includes a countable intersection of dense open sets.

Baire Category Theorem
Comeagre sets in \mathscr{C} are dense.
Theorem (Kaye 2008)
There is a smallest one amongst the comeagre sets in \mathscr{C} that are invariant under the automorphisms of M.

Definition (Kaye 2008)
The set of generic cuts is this smallest comeagre set.

Special cuts

Special cuts

- An automorphism of M is a bijection $M \rightarrow M$ that preserves $0,1,+, \times,<$.

Special cuts

- An automorphism of M is a bijection $M \rightarrow M$ that preserves $0,1,+, \times,<$.
- For a cut I and $c \in M$,

$$
\operatorname{Orb}(I, c)=\{J:(M, I, c) \cong(M, J, c)\}
$$

Special cuts

- An automorphism of M is a bijection $M \rightarrow M$ that preserves $0,1,+, \times,<$.
- For a cut I and $c \in M$,

$$
\operatorname{Orb}(I, c)=\{J:(M, I, c) \cong(M, J, c)\}
$$

Definition
A cut I is special over $c \in M$ if

$$
\operatorname{Orb}(I, c) \cap \llbracket a, b \rrbracket=\{I\}
$$

for some $\llbracket a, b \rrbracket$ containing I.

Special cuts

- An automorphism of M is a bijection $M \rightarrow M$ that preserves $0,1,+, \times,<$.
- For a cut I and $c \in M$,

$$
\operatorname{Orb}(I, c)=\{J:(M, I, c) \cong(M, J, c)\}
$$

Definition
A cut I is special over $c \in M$ if

$$
\operatorname{Orb}(I, c) \cap \llbracket a, b \rrbracket=\{I\}
$$

for some $\llbracket a, b \rrbracket$ containing I.

Special cuts

- An automorphism of M is a bijection $M \rightarrow M$ that preserves $0,1,+, \times,<$.
- For a cut I and $c \in M$,

$$
\operatorname{Orb}(I, c)=\{J:(M, I, c) \cong(M, J, c)\}
$$

Definition
A cut I is special over $c \in M$ if

$$
\operatorname{Orb}(I, c) \cap \llbracket a, b \rrbracket=\{I\}
$$

for some $\llbracket a, b \rrbracket$ containing I.

Special cuts

- An automorphism of M is a bijection $M \rightarrow M$ that preserves $0,1,+, \times,<$.
- For a cut I and $c \in M$,

$$
\operatorname{Orb}(I, c)=\{J:(M, I, c) \cong(M, J, c)\}
$$

Definition
A cut I is special over $c \in M$ if

$$
\operatorname{Orb}(I, c) \cap \llbracket a, b \rrbracket=\{I\}
$$

for some $\llbracket a, b \rrbracket$ containing I.

Special cuts

- An automorphism of M is a bijection $M \rightarrow M$ that preserves $0,1,+, \times,<$.
- For a cut I and $c \in M$,

$$
\operatorname{Orb}(I, c)=\{J:(M, I, c) \cong(M, J, c)\}
$$

Definition
A cut I is special over $c \in M$ if

$$
\operatorname{Orb}(I, c) \cap \llbracket a, b \rrbracket=\{I\}
$$

for some $\llbracket a, b \rrbracket$ containing I.

Special cuts

- An automorphism of M is a bijection $M \rightarrow M$ that preserves $0,1,+, \times,<$.
- For a cut I and $c \in M$,

$$
\operatorname{Orb}(I, c)=\{J:(M, I, c) \cong(M, J, c)\}
$$

Definition
A cut I is special over $c \in M$ if

$$
\operatorname{Orb}(I, c) \cap \llbracket a, b \rrbracket=\{I\}
$$

for some $\llbracket a, b \rrbracket$ containing I.

Example

\mathbb{N} is a special cut over every $c \in M$.

The opposite of being special

Definition
A cut I is special over $c \in M$ if

$$
\operatorname{Orb}(I, c) \cap \llbracket a, b \rrbracket=\{I\}
$$

for some $\llbracket a, b \rrbracket$ containing I.

The opposite of being special

A cut I is not special over $c \in M$ if and only if

$$
\operatorname{Orb}(I, c) \cap \llbracket a, b \rrbracket \supsetneqq\{I\}
$$

for all $\llbracket a, b \rrbracket$ containing I.

Definition
A cut I is special over $c \in M$ if

$$
\operatorname{Orb}(I, c) \cap \llbracket a, b \rrbracket=\{I\}
$$

for some $\llbracket a, b \rrbracket$ containing I.

The opposite of being special

A cut I is not special over $c \in M$ if and only if

$$
\operatorname{Orb}(I, c) \cap \llbracket a, b \rrbracket \supsetneqq\{I\}
$$

for all $\llbracket a, b \rrbracket$ containing I.
Theorem (Kaye-W 2010)

A Y-cut I is generic if and only if

$$
\operatorname{Orb}(I, c) \cap \llbracket u, v \rrbracket \neq \varnothing \text { for all nonempty } \llbracket u, v \rrbracket \subseteq \llbracket a, b \rrbracket
$$

for all $c \in M$ and all small enough $\llbracket a, b \rrbracket$ containing I.

The opposite of being special

A cut I is not special over $c \in M$ if and only if

$$
\operatorname{Orb}(I, c) \cap \llbracket a, b \rrbracket \supsetneqq\{I\}
$$

for all $\llbracket a, b \rrbracket$ containing I.
Theorem (Kaye-W 2010)

A Y-cut I is generic if and only if

$$
\operatorname{Orb}(I, c) \cap \llbracket u, v \rrbracket \neq \varnothing \text { for all nonempty } \llbracket u, v \rrbracket \subseteq \llbracket a, b \rrbracket
$$

for all $c \in M$ and all small enough $\llbracket a, b \rrbracket$ containing I.

A generic cut can move about freely in its neighbourhood.

Closedness under functions

Closedness under functions

Definitions

- A cut I is closed under $F: M \rightarrow M$ if $\forall x \in I \quad F(x) \in I$.

Closedness under functions

Definitions

- A cut I is closed under $F: M \rightarrow M$ if $\forall x \in I \quad F(x) \in I$.
- Let $c \in M$. A function $F: M \rightarrow M$ is definable over c if there is $\varphi(x, y, z) \in \mathscr{L}_{\mathrm{A}}$ such that for all $x, y \in M$,

$$
F(x)=y \quad \Leftrightarrow \quad M \models \varphi(x, y, c)
$$

Closedness under functions

Definitions

- A cut I is closed under $F: M \rightarrow M$ if $\forall x \in I \quad F(x) \in I$.
- Let $c \in M$. A function $F: M \rightarrow M$ is definable over c if there is $\varphi(x, y, z) \in \mathscr{L}_{\mathrm{A}}$ such that for all $x, y \in M$,

$$
F(x)=y \quad \Leftrightarrow \quad M \models \varphi(x, y, c)
$$

- For $F, G: M \rightarrow M$, we say that F dominates G on a cut I if $F(x) \geqslant G(x)$ for all large enough $x \in I$.

Closedness under functions

Definitions

- A cut I is closed under $F: M \rightarrow M$ if $\forall x \in I \quad F(x) \in I$.
- Let $c \in M$. A function $F: M \rightarrow M$ is definable over c if there is $\varphi(x, y, z) \in \mathscr{L}_{\mathrm{A}}$ such that for all $x, y \in M$,

$$
F(x)=y \quad \Leftrightarrow \quad M \models \varphi(x, y, c)
$$

- For $F, G: M \rightarrow M$, we say that F dominates G on a cut I if $F(x) \geqslant G(x)$ for all large enough $x \in I$.

Example
Define $Y_{k}(x)=(\min y)(Y(x, y) \geqslant k)$.

Closedness under functions

Definitions

- A cut I is closed under $F: M \rightarrow M$ if $\forall x \in I \quad F(x) \in I$.
- Let $c \in M$. A function $F: M \rightarrow M$ is definable over c if there is $\varphi(x, y, z) \in \mathscr{L}_{\mathrm{A}}$ such that for all $x, y \in M$,

$$
F(x)=y \quad \Leftrightarrow \quad M \models \varphi(x, y, c)
$$

- For $F, G: M \rightarrow M$, we say that F dominates G on a cut I if $F(x) \geqslant G(x)$ for all large enough $x \in I$.

Example
Define $Y_{k}(x)=(\min y)(Y(x, y) \geqslant k)$. Then a cut is a Y-cut if and only if it is closed under Y_{k} for all $k \in \mathbb{N}$.

Closing only under the indicator

Theorem (W)
A Y-cut I is generic if and only if the following hold.

Example
Define $Y_{k}(x)=(\min y)(Y(x, y) \geqslant k)$. Then a cut is a Y-cut if and only if it is closed under Y_{k} for all $k \in \mathbb{N}$.

Closing only under the indicator

Theorem (W)
A Y-cut I is generic if and only if the following hold.
(a) If F is a definable function $M \rightarrow M$ under which I is closed, then F is dominated on I by Y_{k} for some $k \in \mathbb{N}$.

Example
Define $Y_{k}(x)=(\min y)(Y(x, y) \geqslant k)$. Then a cut is a Y-cut if and only if it is closed under Y_{k} for all $k \in \mathbb{N}$.

Closing only under the indicator

Theorem (W)
A Y-cut I is generic if and only if the following hold.
(a) If F is a definable function $M \rightarrow M$ under which I is closed, then F is dominated on I by Y_{k} for some $k \in \mathbb{N}$.
(b) For every $c \in M$, there exists $b>I$ such that for all functions $F: M \rightarrow M$ definable over c,

$$
\exists x \in I \quad F(x)>I \quad \Rightarrow \quad \exists x \in I \quad F(x)>b
$$

Example
Define $Y_{k}(x)=(\min y)(Y(x, y) \geqslant k)$. Then a cut is a Y-cut if and only if it is closed under Y_{k} for all $k \in \mathbb{N}$.

Closing only under the indicator

Theorem (W)
A Y-cut I is generic if and only if the following hold.
(a) If F is a definable function $M \rightarrow M$ under which I is closed, then F is dominated on I by Y_{k} for some $k \in \mathbb{N}$.
(b) For every $c \in M$, there exists $b>I$ such that for all functions $F: M \rightarrow M$ definable over c,

$$
\exists x \in I \quad F(x)>I \quad \Rightarrow \quad \exists x \in I \quad F(x)>b .
$$

There are no important changes near a generic cut.

The theory of Y-cuts

(a) If F is a definable function $M \rightarrow M$ under which I is closed, then F is dominated on I by Y_{k} for some $k \in \mathbb{N}$.

The theory of Y-cuts

Definition

$\mathscr{L}_{\text {cut }}$ denotes the language consisting of

- the symbols in $\mathscr{L}_{\text {A }}$,

The theory of Y-cuts

Definition

$\mathscr{L}_{\text {cut }}$ denotes the language consisting of

- the symbols in $\mathscr{L}_{\text {A }}$,
- one function symbol for each Skolem function in \mathscr{L}_{A}, and

The theory of Y-cuts

Definition

definable function

$\mathscr{L}_{\text {cut }}$ denotes the language consisting of

- the symbols in \mathscr{L}_{A},
- one function symbol for each Skolem function in \mathscr{L}_{A}, and

The theory of Y-cuts

Definition

definable function

$\mathscr{L}_{\text {cut }}$ denotes the language consisting of

- the symbols in \mathscr{L}_{A},
- one function symbol for each Skolem function in \mathscr{L}_{A}, and
- one new unary predicate symbol \mathbb{I}.

The theory of Y-cuts

Definition

definable function

$\mathscr{L}_{\text {cut }}$ denotes the language consisting of

- the symbols in $\mathscr{L}_{\text {A }}$,
- one function symbol for each Skolem function in \mathscr{L}_{A}, and
- one new unary predicate symbol \mathbb{I}.

PA ${ }_{Y}$ is the $\mathscr{L}_{\text {cut }}$ theory that consists of

The theory of Y-cuts

Definition

definable function

$\mathscr{L}_{\text {cut }}$ denotes the language consisting of

- the symbols in $\mathscr{L}_{\text {A }}$,
- one function symbol for each Skolem function in \mathscr{L}_{A}, and
- one new unary predicate symbol \mathbb{I}.

PA ${ }_{Y}$ is the $\mathscr{L}_{\text {cut }}$ theory that consists of

- the axioms of PA,

The theory of Y-cuts

Definition

definable function

$\mathscr{L}_{\text {cut }}$ denotes the language consisting of

- the symbols in $\mathscr{L}_{\text {A }}$,
- one function symbol for each Skolem function in \mathscr{L}_{A}, and
- one new unary predicate symbol \mathbb{I}.

PA ${ }_{Y}$ is the $\mathscr{L}_{\text {cut }}$ theory that consists of

- the axioms of PA,
- the definitions of the Skolem functions, and

The theory of Y-cuts

Definition

definable function

$\mathscr{L}_{\text {cut }}$ denotes the language consisting of

- the symbols in $\mathscr{L}_{\text {A }}$,
- one function symbol for each Skolem function in \mathscr{L}_{A}, and
- one new unary predicate symbol \mathbb{I}.

PA ${ }_{Y}$ is the $\mathscr{L}_{\text {cut }}$ theory that consists of

- the axioms of PA,
- the definitions of the Skolem functions, and
- a scheme saying "II is a Y-cut".

The theory of Y-cuts

Definition

definable function

$\mathscr{L}_{\text {cut }}$ denotes the language consisting of

- the symbols in \mathscr{L}_{A},
- one function symbol for each Skolem function in \mathscr{L}_{A}, and
- one new unary predicate symbol \mathbb{I}.

PA ${ }_{Y}$ is the $\mathscr{L}_{\text {cut }}$ theory that consists of

- the axioms of PA,
- the definitions of the Skolem functions, and
- a scheme saying "II is a Y-cut".

Normal Form Lemma
Every \exists formula in $\mathscr{L}_{\text {cut }}$ is equivalent over PA $_{Y}$ to

$$
\exists x \in \mathbb{I} \quad F(x, \bar{z})>\mathbb{I}
$$

for some Skolem function F.

Existential closedness

Definition
An existentially closed model of a theory T is a model $\mathfrak{M} \models T$ such that for all \exists formula $\varphi(\bar{z})$ and all $\bar{c} \in \mathfrak{M}$,
if there is a model of T extending \mathfrak{M} satisfying $\varphi(\bar{c})$, then $\mathfrak{M} \models \varphi(\bar{c})$.

Normal Form Lemma
Every \exists formula in $\mathscr{L}_{\text {cut }}$ is equivalent over PA $_{Y}$ to

$$
\exists x \in \mathbb{I} \quad F(x, \bar{z})>\mathbb{I}
$$

for some Skolem function F.

Existential closedness

algebraically closed

Definition
An existentially closed model of a theory T is a model $\mathfrak{M} \models T$ such that for all \exists formula $\varphi(\bar{z})$ and all $\bar{c} \in \mathfrak{M}$,
if there is a model of T extending \mathfrak{M} satisfying $\varphi(\bar{c})$, then $\mathfrak{M} \vDash \varphi(\bar{c})$.

Normal Form Lemma
Every \exists formula in $\mathscr{L}_{\text {cut }}$ is equivalent over PA $_{Y}$ to

$$
\exists x \in \mathbb{I} \quad F(x, \bar{z})>\mathbb{I}
$$

for some Skolem function F.

Existential closedness

algebraically closed

Definition

An existentially closed model of a theory T is a model $\mathfrak{M} \models T$ such that for all \exists formula $\varphi(\bar{z})$ and all $\bar{c} \in \mathfrak{M}$,
if there is a model of T extending \mathfrak{M} satisfying $\varphi(\bar{c})$, then $\mathfrak{M} \vDash \varphi(\bar{c})$.

Theorem (Kaye-W 2010 \& 2013^{+}, W)
A Y-cut I is generic if and only if the following hold.
(a) (M, I) is an existentially closed model of PA_{Y}.

Normal Form Lemma
Every \exists formula in $\mathscr{L}_{\text {cut }}$ is equivalent over PA $_{Y}$ to

$$
\exists x \in \mathbb{I} \quad F(x, \bar{z})>\mathbb{I}
$$

for some Skolem function F.

Existential closedness

algebraically closed

Definition

An existentially closed model of a theory T is a model $\mathfrak{M} \models T$ such that for all \exists formula $\varphi(\bar{z})$ and all $\bar{c} \in \mathfrak{M}$,
if there is a model of T extending \mathfrak{M} satisfying $\varphi(\bar{c})$, then $\mathfrak{M} \vDash \varphi(\bar{c})$.

Theorem (Kaye-W 2010 \& 2013^{+}, W)
A Y-cut I is generic if and only if the following hold.
(a) (M, I) is an existentially closed model of PA_{Y}.
(b) For every $c \in M$,

$$
\left\{(\min x>I)(\varphi(x, c)): \varphi \in \mathscr{L}_{\mathrm{A}} \text { for which the min exists }\right\}
$$

is bounded below in $M \backslash I$.

Recursive saturation and codedness of types

Proposition (W)
No existentially closed $(M, I) \models \mathrm{PA}_{Y}$ is \forall_{1}-recursively saturated.

Recursive saturation and codedness of types

Proposition (W)
No existentially closed $(M, I) \models \mathrm{PA}_{Y}$ is \forall_{1}-recursively saturated.
Proof
Because $\left\{k \in M:(M, I) \mid=\forall x \in \mathbb{I} \quad Y_{k}(x) \in \mathbb{I}\right\}=\mathbb{N}$.

Recursive saturation and codedness of types

Proposition (W)

No existentially closed $(M, I) \models \mathrm{PA}_{Y}$ is \forall_{1}-recursively saturated.
Proof
Because $\left\{k \in M:(M, I) \mid=\forall x \in \mathbb{I} \quad Y_{k}(x) \in \mathbb{I}\right\}=\mathbb{N}$.
Theorem (Kaye-W 2013+, W)
A Y-cut I is generic if and only if the following hold.
(a) (M, I) is an existentially closed model of PA_{Y}.
(b)

Recursive saturation and codedness of types

Proposition (W)

No existentially closed $(M, I) \models \mathrm{PA}_{Y}$ is \forall_{1}-recursively saturated.
Proof
Because $\left\{k \in M:(M, I) \mid=\forall x \in \mathbb{I} \quad Y_{k}(x) \in \mathbb{I}\right\}=\mathbb{N}$.
Theorem (Kaye-W 2013+, W)
A Y-cut I is generic if and only if the following hold.
(a) (M, I) is an existentially closed model of PA_{Y}.
(b) The \exists-type of c in (M, I) is coded in M for every $c \in M$

Recursive saturation and codedness of types

Proposition (W)

No existentially closed $(M, I) \models \mathrm{PA}_{Y}$ is \forall_{1}-recursively saturated.
Proof
Because $\left\{k \in M:(M, I) \mid=\forall x \in \mathbb{I} \quad Y_{k}(x) \in \mathbb{I}\right\}=\mathbb{N}$.
Theorem (Kaye-W 2013+, W)
A Y-cut I is generic if and only if the following hold.
(a) (M, I) is an existentially closed model of PA_{Y}.
(b) The \exists-type of c in (M, I) is coded in M for every $c \in M$, i.e., for each $c \in M$, there is a definable set C in M such that for all \exists formulas $\varphi(x)$ in $\mathscr{L}_{\text {cut }}$,

$$
\ulcorner\varphi\urcorner \in C \quad \Leftrightarrow \quad(M, I) \models \varphi(c) .
$$

Conclusion

What generic cuts are

Conclusion

What generic cuts are

- Generic cuts can move about freely in its neighbourhood.

Conclusion

What generic cuts are

- Generic cuts can move about freely in its neighbourhood.
- There are no important changes near a generic cut.

Conclusion

What generic cuts are

- Generic cuts can move about freely in its neighbourhood.
- There are no important changes near a generic cut.

Genericity of cuts can be characterized in terms of

- the topology,

Conclusion

What generic cuts are

- Generic cuts can move about freely in its neighbourhood.
- There are no important changes near a generic cut.

Genericity of cuts can be characterized in terms of

- the topology,
- automorphisms,

Conclusion

What generic cuts are

- Generic cuts can move about freely in its neighbourhood.
- There are no important changes near a generic cut.

Genericity of cuts can be characterized in terms of

- the topology,
- automorphisms,
- the functions under which the cut is closed, and

Conclusion

What generic cuts are

- Generic cuts can move about freely in its neighbourhood.
- There are no important changes near a generic cut.

Genericity of cuts can be characterized in terms of

- the topology,
- automorphisms,
- the functions under which the cut is closed, and
- existential closedness, definable points, saturation, etc.

Conclusion

What generic cuts are

- Generic cuts can move about freely in its neighbourhood.
- There are no important changes near a generic cut.

Genericity of cuts can be characterized in terms of

- the topology,
- automorphisms,
- the functions under which the cut is closed, and
- existential closedness, definable points, saturation, etc.

Genericity is a robust notion!

