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First-order arithmetic

I LI = {0, 1,+,×, <,=}.
I Quantifiers of the forms ∀x<t and ∃x<t are bounded.

I LI-formulas in which all quantifiers are bounded are ∆0.

I Σn-formulas are LI-formulas of the form (n ∈ N)

∃x̄1 ∀x̄2 · · · Qx̄n ϕ(x̄ , z̄),

where ϕ ∈ ∆0 and Q ∈ {∀, ∃}.
I Πn-formulas are negations of Σn-formulas. (n ∈ N)

I IΓ consists of PA− and

θ(0) ∧ ∀x (θ(x)→ θ(x + 1))→ ∀x θ(x)

for all θ ∈ Γ.

may contain
parameters

(Γ is a set of LI-formulas.)

I PA =
⋃

n∈N IΣn.
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End-extensions and collection

Definition
An end-extension of M |= PA− is K ⊇ M such that

x

K

y

M

∀x ∈ M ∀y ∈ K \M x < y .

Definition
For each n ∈ N, we have BΣn axiomatized by I∆0 and

∀a
(
∀x<a ∃y θ(x , y)→ ∃b ∀x<a ∃y<b θ(x , y)

)
,

where θ ranges over Σn.

Proposition (Parsons 1970, Paris–Kirby 1978)

IΣn+1 ` BΣn+1 ` IΣn for all n ∈ N.



Model theory of collection

Theorem (Paris–Kirby 1978)

For a countable M |= I∆0 and n > 2, the following are equivalent.

(a) M |= BΣn.

(b) M has a proper Σn-elementary end-extension.

Theorem (Paris–Kirby 1978)

If M |= I∆0 that has a proper Σ1-elementary end-extension, then
M |= BΣ2.

Open question (Wilkie–Paris 1989)

Does every countable model of BΣ1 have a proper end-extension
K |= I∆0?

Theorem (folkore?)

If M is a countable model of BΣ1 + exp, then M has a proper
end-extension K |= I∆0.
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Model theory of induction

Theorem (Mac Dowell–Specker 1961, Paris–Kirby 1978)

For M |= I∆0, the following are equivalent.

(a) M |= PA.

(b) M has a proper (conservative) elementary end-extension.

Theorem (Yokoyama, folklore?)

For a countable M |= I∆0 + exp and n ∈ N, the following are
equivalent.

(a) M |= IΣn+1.

(b) M has proper Σn-elementary end-extension K |= IΣn in which
M is semiregular.

Proof
Self-embed M.
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Second-order arithmetic

I LII = {0, 1,+,×, <,=,∈}.
I The number sort has variables x , y , z , . . .

I The set sort has variables X ,Y ,Z , . . .

I Equality of sets is defined by the Axiom of Extensionality

∀X ,Y
(
∀x (x ∈ X ↔ x ∈ Y )→ X = Y

)
.

I So LII-structures are of the form (M,X ), where X ⊆ P(M).

X

KXK

M
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End-extensions of models of second-order arithmetic

Definition

I An end-extension of (M,X ) |= PA− is (K ,Y ) ⊇ (M,X ) in
which K is an end-extension of M.

X

X

Y

K

XK

M

I An end-extension (K ,Y ) ⊇ (M,X ) is proper if K 6= M.

Technical problem

In second-order arithmetic: X ⊆ P(M) and Y ⊆ P(K ).
In model theory: M ⊆ K and X ⊆ Y .

The two conventions do not mix well.

Solution
Make explicit an embedding X ↪→ Y

X 7→ XK .
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The formula hierarchy in second-order arithmetic

I LII-formulas in which all quantifiers are bounded number
quantifiers are ∆0

0.

I Σ0
n-formulas are LII-formulas of the form Let n ∈ N

and i < 2.

∃x̄1 ∀x̄2 · · · Qx̄n ϕ(x̄ , ȳ , Z̄ ),

where ϕ ∈ ∆0
0 and Q ∈ {∀, ∃}.

I Formulas in
⋃

m∈N Σ0
m are called arithmetical.

I Σ1
n-formulas are LII-formulas of the form

∃X̄1 ∀X̄2 · · · QX̄n ϕ(X̄ , ȳ , Z̄ ),

where ϕ is arithmetical and Q ∈ {∀,∃}.

same as Σ1
0

I Πi
n-formulas are negations of Σi

n-formulas.

I Σi
n-formulas equivalent to Πi

n-formulas are called ∆i
n.
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Collection in second-order arithmetic

I IΓ and BΓ are defined as in the first-order context for a class
of LII-formulas Γ.

I PA∗ =
⋃

n∈N IΣ0
n.

Proposition (essentially Paris–Kirby 1978)

For countable (M,X ) |= I∆0
0 and n > 2, the following are

equivalent.

(a) (M,X ) |= BΣ0
n.

(b) (M,X ) has a proper Σ0
n-elementary end-extension.
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Induction in second-order arithmetic

Theorem (essentially Mac Dowell–Specker 1961,
Paris–Kirby 1978)

For a countable (M,X ) |= I∆0
0, the following are equivalent.

(a) (M,X ) |= PA∗.

(b) (M,X ) has a proper Σ1
0-elementary end-extension.

Theorem (Yokoyama, folklore?)

For a countable (M,X ) |= I∆0
0 + exp and n ∈ N, the following are

equivalent.

(a) (M,X ) |= IΣ0
n+1.

(b) (M,X ) has proper Σ0
n-elementary end-extension

(K ,Y ) |= IΣ0
n in which M is semiregular.
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Subsystems of second-order arithmetic

I For a class Γ of LII-formulas, define

Γ-CA =
{
∃X ∀v

(
v ∈ X ↔ θ(v)

)
: θ ∈ Γ

}
.

I RCA0 = IΣ0
1 + ∆0

1-CA.

I WKL0 = RCA0 + Weak König’s Lemma.

I ACA0 = WKL0 + Σ1
0-CA.

I ATR0 = ACA0 + Arithmetical Transfinite Recursion.

I Π1
1-CA0 = ATR0 + Π1

1-CA.
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Conservative extensions

Definition
An end-extension (K ,Y ) ⊇ (M,X ) is conservative if

X

Y

KY

M

X = {Y ∩M : Y ∈ Y }.

Theorem (Scott 1962, Tanaka 1997)

For a countable (M,X ) |= RCA0, the following are equivalent.

(a) (M,X ) |= WKL0.

(b) (M,X ) has a proper conservative end-extension.

Theorem (Gaifman 1976, Phillips 1974)

For a countable (M,X ) |= RCA0, the following are equivalent.

(a) (M,X ) |= ACA0.

(b) (M,X ) has a proper Σ1
0-elementary conservative

end-extension.

Yokoyama 2007: Σ1
1-elementary
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More elementarity

Theorem (Yokoyama)

Let n > 1. Then every countable model of RCA0 + Σ1
n-CA + Σ1

n-AC
has a proper Σ1

n+1-elementary conservative end-extension.

Proof
Ultrapower over an ultrafilter on the sets in the model.

Corollary

Every countable model of Π1
1-CA0 has a proper Σ1

2-elementary
conservative end-extension.

Proof
Π1

1-CA0 ` RCA0 + Σ1
1-CA + Σ1

1-AC.
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The Axiom of Choice in second-order arithmetic

Definition
For a class of LII-formulas Γ, define Γ-AC to be the set of all
sentences of the form

∀x ∃Y θ(x ,Y )→ ∃Y ∀x θ(x , (Y )x)

where θ ∈ Γ. Here (Y )x = {y : 〈x , y〉 ∈ Y }.

Facts (various)

(a) Σ1
n is closed under number quantification under Σ1

n-AC.

Let n ∈ N.

(b) Π0
1-AC is equivalent to WKL0 over RCA0.

(c) Π0
2-AC is equivalent to Σ1

1-AC over ACA0.

(d) Σ1
1-AC is Π1

2-conservative over ACA0.

(e) RCA0 + Σ1
n-AC ` ∆1

n-CA.

(f) RCA0 +
⋃

m∈N Σ1
m-CA 0 Σ1

3-AC.
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A converse for Π1
1-CA0?

Theorem (Kaye–W, Simpson)

For a countable (M,X ) |= RCA0, the following are equivalent.

(a) (M,X ) |= Π1
1-CA0.

(b) (M,X ) has an end-extension (K ,Y ) containing some cofinal
G ∈ Y such that for all arithmetical formulas ζ(i ,X ),

Σ1
1-elementary

∃H ∈ FiltX (G ) ∀i ∈ M
(

(K ,Y ) |= ζ(i ,G ) ⇔ H>i 
 ζ(i ,X )
)
.

Notation

I If (K ,Y ) ⊇ (M,X ) and G ∈ Y , then

FiltX (G ) = {S ∈X : G ⊆ SK}.

I H 
 ξ(X ) means (M,X ) |= ∀X ⊆cf H ξ(X ).

I H>i = {x ∈ H : x > i}.

Theorem (Kaye–W)

For a countable (M,X ) |= RCA0, the following are equivalent.

(a) (M,X ) |= ATR0 + Σ0
1-RT.

(b) (M,X ) has an end-extension (K ,Y ) containing some cofinal
G ∈ Y such that for all Σ0

1-formulas ξ(X ),

(K ,Y ) |= ξ(G ) ⇔ ∃H ∈ FiltX (G ) H 
 ξ(X ).
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How about ATR0?
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Combinatorial basis

Theorem (Friedman–McAloon–Simpson 1982)

ATR0 is equivalent over RCA0 to

∀cfS ∃H ⊆cf S
(
∀X ⊆cf H ξ(X ) ∨ ∀X ⊆cf H ¬ξ(X )

)
,

where ξ ranges over Σ0
1.

Theorem (Simpson)

Π1
1-CA0 is equivalent over RCA0 to

∀cfS ∃H ⊆cf S ∀i(
∀X ⊆cf H>i ζ(i ,X ) ∨ ∀X ⊆cf H>i ¬ζ(i ,X )

)
,

where ζ ranges over arithmetical formulas.
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Concluding questions

(1) To what extent are the following pairs similar?

BΣn+1 ∼ Σ1
n-CA + Σ1

n-AC
BΣ1 ∼ ATR0

BΣ1 + exp ∼ ATR0 + Σ0
1-RT

(2) Are the similarities merely superficial?

(3) What is the role played by definable types in second-order
arithmetic?
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An excursion for me

Theorem
For a countable M |= I∆0, the following are equivalent.

(a) M |= BΣ1.

(b) M has a Σ2-elementary cofinal extension K containing some g
such that

(i) for all Σ1- and Π1-formulas ξ(x),

K |= ξ(g) ⇔ ∃A ∈ FiltM(g) A 
 ξ(x),

(ii)

for all A ∈ FiltM(g) and θ ∈ ∆0, there is b ∈ M such that

A 
 ∃v θ(x , v) ⇒ A 
 ∃v<b θ(x , v).

Notation

I Def∗Π1
(M) = {A ∈ DefΠ1(M) : A is bounded and infinite}.

I If g ∈ K ⊇ M, then FiltM(g) = {A ∈ Def∗Π1
(M) : g ∈ AK}.

I A 
 ξ(x) means M |= ∀x ∈ A ξ(x).
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Comparison with ATR0

Theorem (Kaye–W)

For a countable (M,X ) |= RCA0, the following are equivalent.

(a) (M,X ) |= ATR0.

(b) (M,X ) has (K ,Y ) containing some cofinal G ∈ Y such that
for all Σ0

1- and Π0
1-formulas ξ(X ),

(K ,Y ) |= ξ(G ) ⇔ ∃H ∈ FiltX (G ) H 
 ξ(X )

Notation

I If (K ,Y ) ⊇ (M,X ) and G ∈ Y , then

FiltX (G ) = {S ∈X : G ⊆ SK}.

I H 
 ξ(X ) means (M,X ) |= ∀X ⊆cf H ξ(X ).
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