Tin Lok Wong

Ghent University, Belgium

24 June, 2013

Plan

- ► First-order arithmetic
- ► Second-order arithmetic
- ► The Big Five and beyond

First-order arithmetic

- $\mathcal{L}_{\mathbf{I}} = \{0, 1, +, \times, <, =\}.$
- ▶ Quantifiers of the forms $\forall x < t$ and $\exists x < t$ are bounded.
- \mathcal{L}_{I} -formulas in which all quantifiers are bounded are Δ_{0} .
- lacksquare Σ_n -formulas are \mathscr{L}_{I} -formulas of the form $(n\in\mathbb{N})$

$$\exists \bar{x}_1 \ \forall \bar{x}_2 \cdots \ Q\bar{x}_n \ \varphi(\bar{x},\bar{z}),$$

where $\varphi \in \Delta_0$ and $Q \in \{ \forall, \exists \}$.

- ▶ Π_n -formulas are negations of Σ_n -formulas. $(n \in \mathbb{N})$
- ▶ IF consists of PA⁻ and

$$\theta(0) \land \forall x \ (\theta(x) \to \theta(x+1)) \to \forall x \ \theta(x)$$

for all $\theta \in \Gamma$. $(\Gamma \text{ is a set of } \mathscr{L}_{\text{I}}\text{-formulas.})$

▶ $PA = \bigcup_{n \in \mathbb{N}} I\Sigma_n$.

First-order arithmetic

- $\blacktriangleright \mathscr{L}_{I} = \{0, 1, +, \times, <, =\}.$
- ▶ Quantifiers of the forms $\forall x < t$ and $\exists x < t$ are bounded.
- \triangleright \mathcal{L}_{I} -formulas in which all quantifiers are bounded are \triangle_{0} .
- $\triangleright \Sigma_n$ -formulas are \mathcal{L}_I -formulas of the form $(n \in \mathbb{N})$

$$\exists \bar{x}_1 \ \forall \bar{x}_2 \cdots \ Q\bar{x}_n \ \varphi(\bar{x}, \bar{z}),$$

where $\varphi \in \Delta_0$ and $Q \in \{ \forall, \exists \}$.

- ▶ \prod_{n} -formulas are negations of \sum_{n} -formulas. $(n \in \mathbb{N})$
- ▶ IF consists of PA[−] and

$$\theta(0) \wedge \forall x \; (\theta(x) \to \theta(x+1)) \to \forall x \; \theta(x)$$

for all $\theta \in \Gamma$.

 $ightharpoonup PA = \bigcup_{n \in \mathbb{N}} \mathsf{I}\Sigma_n.$ may contain

 $_$ (Γ is a set of $\mathscr{L}_{ ext{I}}$ -formulas.)

parameters

End-extensions and collection

Definition

An *end-extension* of $M \models PA^-$ is $K \supseteq M$ such that

$$\forall x \in M \ \forall y \in K \setminus M \ x < y.$$

Definition

For each $n \in \mathbb{N}$, we have $\mathsf{B}\Sigma_n$ axiomatized by $\mathsf{I}\Delta_0$ and

$$\forall a \ (\forall x < a \ \exists y \ \theta(x,y) \rightarrow \exists b \ \forall x < a \ \exists y < b \ \theta(x,y)),$$

where θ ranges over Σ_n .

Proposition (Parsons 1970, Paris–Kirby 1978) $I\Sigma_{n+1} \vdash B\Sigma_{n+1} \vdash I\Sigma_n$ for all $n \in \mathbb{N}$.

Theorem (Paris-Kirby 1978)

For a countable $M \models I\Delta_0$ and $n \geqslant 2$, the following are equivalent.

- (a) $M \models \mathsf{B}\Sigma_n$.
- (b) M has a proper Σ_n -elementary end-extension.

Theorem (Paris-Kirby 1978)

For a countable $M \models I\Delta_0$ and $n \geqslant 2$, the following are equivalent.

- (a) $M \models B\Sigma_n$.
- (b) M has a proper Σ_n -elementary end-extension.

Theorem (Paris-Kirby 1978)

If $M \models I\Delta_0$ that has a proper Σ_1 -elementary end-extension, then $M \models B\Sigma_2$.

Theorem (Paris-Kirby 1978)

For a countable $M \models I\Delta_0$ and $n \geqslant 2$, the following are equivalent.

- (a) $M \models B\Sigma_n$.
- (b) M has a proper Σ_n -elementary end-extension.

Theorem (Paris-Kirby 1978)

If $M \models I\Delta_0$ that has a proper Σ_1 -elementary end-extension, then $M \models B\Sigma_2$.

Open question (Wilkie-Paris 1989)

Does every countable model of $\mathsf{B}\Sigma_1$ have a proper end-extension $\mathcal{K}\models \mathsf{I}\Delta_0$?

Theorem (Paris-Kirby 1978)

For a countable $M \models I\Delta_0$ and $n \geqslant 2$, the following are equivalent.

- (a) $M \models \mathsf{B}\Sigma_n$.
- (b) M has a proper Σ_n -elementary end-extension.

Theorem (Paris-Kirby 1978)

If $M \models I\Delta_0$ that has a proper Σ_1 -elementary end-extension, then $M \models B\Sigma_2$.

Open question (Wilkie-Paris 1989)

Does every countable model of $\mathsf{B}\Sigma_1$ have a proper end-extension $\mathcal{K}\models \mathsf{I}\Delta_0$?

Theorem (folkore?)

If M is a countable model of $B\Sigma_1 + \exp$, then M has a proper end-extension $K \models I\Delta_0$.

Model theory of induction

Theorem (Mac Dowell-Specker 1961, Paris-Kirby 1978)

For $M \models I\Delta_0$, the following are equivalent.

- (a) $M \models PA$.
- (b) *M* has a proper (conservative) elementary end-extension.

Model theory of induction

Theorem (Mac Dowell-Specker 1961, Paris-Kirby 1978)

For $M \models I\Delta_0$, the following are equivalent.

- (a) $M \models PA$.
- (b) *M* has a proper (conservative) elementary end-extension.

Theorem (Yokoyama, folklore?)

For a countable $M \models \mathsf{I}\Delta_0 + \mathsf{exp}$ and $n \in \mathbb{N}$, the following are equivalent.

- (a) $M \models \mathsf{I}\Sigma_{n+1}$.
- (b) M has proper Σ_n -elementary end-extension $K \models I\Sigma_n$ in which M is semiregular.

Model theory of induction

Theorem (Mac Dowell-Specker 1961, Paris-Kirby 1978)

For $M \models I\Delta_0$, the following are equivalent.

- (a) $M \models PA$.
- (b) *M* has a proper (conservative) elementary end-extension.

Theorem (Yokoyama, folklore?)

For a countable $M \models I\Delta_0 + \exp$ and $n \in \mathbb{N}$, the following are equivalent.

- (a) $M \models \mathsf{I}\Sigma_{n+1}$.
- (b) M has proper Σ_n -elementary end-extension $K \models I\Sigma_n$ in which M is semiregular.

Proof

Self-embed *M*.

Second-order arithmetic

- $\mathscr{L}_{\mathbb{I}} = \{0, 1, +, \times, <, =, \in\}.$
- ▶ The *number sort* has variables x, y, z, ...
- ▶ The set sort has variables X, Y, Z, ...

Second-order arithmetic

- $\mathscr{L}_{\mathbb{I}} = \{0, 1, +, \times, <, =, \in\}.$
- ▶ The *number sort* has variables x, y, z, ...
- ▶ The set sort has variables X, Y, Z, ...
- ► Equality of sets is *defined* by the *Axiom of Extensionality*

$$\forall X, Y \ (\forall x \ (x \in X \leftrightarrow x \in Y) \rightarrow X = Y).$$

Second-order arithmetic

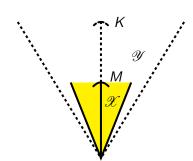
- $\mathscr{L}_{\mathbb{I}} = \{0, 1, +, \times, <, =, \in\}.$
- ▶ The *number sort* has variables x, y, z, ...
- ▶ The set sort has variables X, Y, Z, ...
- Equality of sets is defined by the Axiom of Extensionality

$$\forall X, Y \ (\forall x \ (x \in X \leftrightarrow x \in Y) \rightarrow X = Y).$$

▶ So $\mathcal{L}_{\mathbb{I}}$ -structures are of the form (M, \mathcal{X}) , where $\mathcal{X} \subseteq \mathcal{P}(M)$.

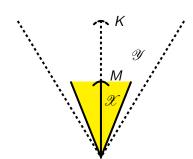
Definition

▶ An *end-extension* of $(M, \mathcal{X}) \models \mathsf{PA}^-$ is $(K, \mathcal{Y}) \supseteq (M, \mathcal{X})$ in which K is an end-extension of M.



Definition

- ▶ An end-extension of $(M, \mathcal{X}) \models \mathsf{PA}^-$ is $(K, \mathcal{Y}) \supseteq (M, \mathcal{X})$ in which K is an end-extension of M.
- ▶ An end-extension $(K, \mathcal{Y}) \supseteq (M, \mathcal{X})$ is *proper* if $K \neq M$.



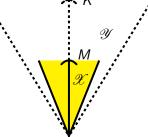
Definition

- ▶ An *end-extension* of $(M, \mathcal{X}) \models PA^-$ is $(K, \mathcal{Y}) \supseteq (M, \mathcal{X})$ in which K is an end-extension of M.
- ▶ An end-extension $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ is *proper* if $K \neq M$.

Technical problem

In second-order arithmetic: $\mathscr{X} \subseteq \mathcal{P}(M)$ and $\mathscr{Y} \subseteq \mathcal{P}(K)$. In model theory: $M \subseteq K$ and $\mathscr{X} \subseteq \mathscr{Y}$.

The two conventions do not mix well.



Definition

- ▶ An end-extension of $(M, \mathcal{X}) \models \mathsf{PA}^-$ is $(K, \mathcal{Y}) \supseteq (M, \mathcal{X})$ in which K is an end-extension of M.
- ▶ An end-extension $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ is *proper* if $K \neq M$.

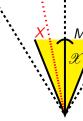
Technical problem

In second-order arithmetic: $\mathscr{X} \subseteq \mathcal{P}(M)$ and $\mathscr{Y} \subseteq \mathcal{P}(K)$. In model theory: $M \subseteq K$ and $\mathscr{X} \subseteq \mathscr{Y}$. X^K :

The two conventions do not mix well.

Solution

Make explicit an embedding $\mathscr{X} \hookrightarrow \mathscr{Y}$ $x \mapsto x^K$



▶ \mathcal{L}_{II} -formulas in which all quantifiers are bounded number quantifiers are Δ_0^0 .

- ▶ \mathcal{L}_{II} -formulas in which all quantifiers are bounded number quantifiers are Δ_0^0 .
- $ightharpoonup \Sigma_n^0$ -formulas of the form

$$\left[\begin{array}{c} \mathsf{Let}\ n\in\mathbb{N} \\ \end{array}\right]$$

$$\exists \bar{x}_1 \ \forall \bar{x}_2 \cdots \ Q\bar{x}_n \ \varphi(\bar{x},\bar{y},\bar{Z}),$$

where $\varphi \in \Delta_0^0$ and $Q \in \{ \forall, \exists \}$.

- ▶ \mathcal{L}_{II} -formulas in which all quantifiers are bounded number quantifiers are Δ_0^0 .
- $ightharpoonup \Sigma_n^0$ -formulas are $\mathcal{L}_{\mathbb{I}}$ -formulas of the form

Let
$$n \in \mathbb{N}$$

$$\exists \bar{x}_1 \ \forall \bar{x}_2 \cdots \ Q\bar{x}_n \ \varphi(\bar{x}, \bar{y}, \bar{Z}),$$

where $\varphi \in \Delta_0^0$ and $Q \in \{ \forall, \exists \}$.

▶ Formulas in $\bigcup_{m \in \mathbb{N}} \Sigma_m^0$ are called *arithmetical*.

- ▶ \mathcal{L}_{II} -formulas in which all quantifiers are bounded number quantifiers are Δ_0^0 .
- $ightharpoonup \Sigma_n^0$ -formulas are $\mathcal{L}_{\mathbb{I}}$ -formulas of the form

Let
$$n \in \mathbb{N}$$

where $\varphi \in \Delta_0^0$ and $Q \in \{ \forall, \exists \}$.

- ▶ Formulas in $\bigcup_{m \in \mathbb{N}} \Sigma_m^0$ are called *arithmetical*.
- $ightharpoonup \Sigma_n^1$ -formulas of the form

$$\exists \bar{X}_1 \ \forall \bar{X}_2 \ \cdots \ \mathrm{Q} \bar{X}_n \ \varphi(\bar{X}, \bar{y}, \bar{Z}),$$

 $\exists \bar{x}_1 \ \forall \bar{x}_2 \cdots \ Q\bar{x}_n \ \varphi(\bar{x}, \bar{y}, \bar{Z}),$

where φ is arithmetical and $Q \in \{ \forall, \exists \}$.

- ▶ \mathcal{L}_{II} -formulas in which all quantifiers are bounded number quantifiers are Δ_0^0 .
- $ightharpoonup \Sigma_n^0$ -formulas are $\mathcal{L}_{\mathbb{I}}$ -formulas of the form

$$\mathscr{L}_{\mathrm{II}}$$
-formulas of the form Let $n\in\mathbb{N}$ $\exists ar{\mathbf{x}}_1\ orall ar{\mathbf{x}}_2\ \cdots\ Qar{\mathbf{x}}_n\ arphi(ar{\mathbf{x}},ar{\mathbf{v}},ar{\mathbf{Z}}).$

same as Σ_0^1

where $\varphi \in \Delta_0^0$ and $Q \in \{ \forall, \exists \}$.

- ▶ Formulas in $\bigcup_{m \in \mathbb{N}} \Sigma_m^0$ are called *arithmetical*.
- $ightharpoonup \Sigma_n^1$ -formulas of the form

$$\exists \bar{X}_1 \ \forall \bar{X}_2 \cdots \ Q\bar{X}_n \ \varphi(\bar{X}, \bar{y}, \bar{Z}),$$

where φ is arithmetical and $Q \in \{ \forall, \exists \}$.

- ▶ \mathcal{L}_{II} -formulas in which all quantifiers are bounded number quantifiers are Δ_0^0 .
- $ightharpoonup \Sigma_n^0$ -formulas are $\mathscr{L}_{\mathbb{I}}$ -formulas of the form

Let
$$n \in \mathbb{N}$$
 and $i < 2$.

where $\varphi \in \Delta_0^0$ and $Q \in \{ \forall, \exists \}$.

- ► Formulas in $\bigcup_{m \in \mathbb{N}} \Sigma_m^0$ are called *arithmetical*.
- $ightharpoonup \Sigma_n^1$ -formulas of the form

$$\exists \bar{X}_1 \ \forall \bar{X}_2 \cdots \ Q\bar{X}_n \ \varphi(\bar{X}, \bar{y}, \bar{Z}),$$

 $\exists \bar{x}_1 \ \forall \bar{x}_2 \cdots \ Q\bar{x}_n \ \varphi(\bar{x}, \bar{y}, \bar{Z}),$

same as Σ_0^1

where φ is arithmetical and $Q \in \{ \forall, \exists \}$.

 $ightharpoonup \Pi_n^i$ -formulas are negations of Σ_n^i -formulas.

- ▶ \mathcal{L}_{II} -formulas in which all quantifiers are bounded number quantifiers are Δ_0^0 .
- $ightharpoonup \Sigma_n^0$ -formulas are $\mathscr{L}_{\mathbb{I}}$ -formulas of the form

Let
$$n \in \mathbb{N}$$
 and $i < 2$.

where $\varphi \in \Delta_0^0$ and $Q \in \{ \forall, \exists \}$.

- ► Formulas in $\bigcup_{m \in \mathbb{N}} \Sigma_m^0$ are called *arithmetical*.
- $ightharpoonup \Sigma_n^1$ -formulas of the form

$$\exists \bar{X}_1 \ \forall \bar{X}_2 \cdots \ Q\bar{X}_n \ \varphi(\bar{X}, \bar{y}, \bar{Z}),$$

 $\exists \bar{x}_1 \ \forall \bar{x}_2 \cdots \ Q\bar{x}_n \ \varphi(\bar{x}, \bar{y}, \bar{Z}),$

same as Σ^1_0

where φ is arithmetical and $Q \in \{ \forall, \exists \}$.

- ▶ $\prod_{n=1}^{i}$ -formulas are negations of $\sum_{n=1}^{i}$ -formulas.
- $ightharpoonup \Sigma_n^i$ -formulas equivalent to Π_n^i -formulas are called Δ_n^i .

Collection in second-order arithmetic

▶ IF and BF are defined as in the first-order context for a class of \mathcal{L}_{II} -formulas Γ .

Collection in second-order arithmetic

- ▶ IΓ and BΓ are defined as in the first-order context for a class of \mathcal{L}_{II} -formulas Γ.
- $ightharpoonup \mathsf{PA}^* = \bigcup_{n \in \mathbb{N}} \mathsf{I}\Sigma_n^0.$

Collection in second-order arithmetic

- ▶ I Γ and B Γ are defined as in the first-order context for a class of \mathcal{L}_{Π} -formulas Γ .
- $ightharpoonup \mathsf{PA}^* = \bigcup_{n \in \mathbb{N}} \mathsf{I}\Sigma_n^0.$

Proposition (essentially Paris-Kirby 1978)

For countable $(M, \mathcal{X}) \models I\Delta_0^0$ and $n \geqslant 2$, the following are equivalent.

- (a) $(M, \mathscr{X}) \models \mathsf{B}\Sigma_n^0$.
- (b) (M, \mathcal{X}) has a proper Σ_n^0 -elementary end-extension.

Induction in second-order arithmetic

Theorem (essentially Mac Dowell–Specker 1961, Paris–Kirby 1978)

For a countable $(M, \mathcal{X}) \models I\Delta_0^0$, the following are equivalent.

- (a) $(M, \mathcal{X}) \models PA^*$.
- (b) (M, \mathcal{X}) has a proper Σ^1_0 -elementary end-extension.

Induction in second-order arithmetic

Theorem (essentially Mac Dowell–Specker 1961, Paris–Kirby 1978)

For a countable $(M, \mathcal{X}) \models \mathsf{I}\Delta_0^0$, the following are equivalent.

- (a) $(M, \mathcal{X}) \models PA^*$.
- (b) (M, \mathcal{X}) has a proper Σ^1_0 -elementary end-extension.

Theorem (Yokoyama, folklore?)

For a countable $(M, \mathcal{X}) \models \mathsf{I}\Delta_0^0 + \mathsf{exp}$ and $n \in \mathbb{N}$, the following are equivalent.

- (a) $(M, \mathscr{X}) \models \mathsf{I}\Sigma_{n+1}^0$.
- (b) (M, \mathscr{X}) has proper Σ_n^0 -elementary end-extension $(K, \mathscr{Y}) \models I\Sigma_n^0$ in which M is semiregular.

▶ For a class Γ of \mathcal{L}_{Π} -formulas, define

$$\Gamma\text{-CA} = \{ \exists X \ \forall v \ (v \in X \leftrightarrow \theta(v)) : \theta \in \Gamma \}.$$

▶ For a class Γ of $\mathcal{L}_{\mathbb{I}}$ -formulas, define

$$\Gamma\text{-CA} = \{ \exists X \ \forall v \ (v \in X \leftrightarrow \theta(v)) \ : \ \theta \in \Gamma \}.$$

- $Arr RCA_0 = I\Sigma_1^0 + \Delta_1^0$ -CA.
- ▶ $WKL_0 = RCA_0 + Weak König's Lemma$.
- $ACA_0 = WKL_0 + \Sigma_0^1 CA.$
- ▶ $ATR_0 = ACA_0 + Arithmetical Transfinite Recursion.$

▶ For a class Γ of $\mathscr{L}_{\mathbb{I}}$ -formulas, define

$$\Gamma\text{-CA} = \{ \exists X \ \forall v \ (v \in X \leftrightarrow \theta(v)) : \theta \in \Gamma \}.$$

• WKL₀ = RCA₀ + Weak König's Lemma.
$$I\Sigma_1$$

$$ACA_0 = WKL_0 + \Sigma_0^1 - CA.$$
 PA

- $ATR_0 = ACA_0 + Arithmetical Transfinite Recursion.$
- $\blacksquare \Pi_1^1 \mathsf{CA}_0 = \mathsf{ATR}_0 + \Pi_1^1 \mathsf{CA}.$

▶ For a class Γ of $\mathcal{L}_{\mathrm{II}}$ -formulas, define

$$\Gamma\text{-CA} = \{ \exists X \ \forall v \ (v \in X \leftrightarrow \theta(v)) \ : \ \theta \in \Gamma \}.$$

► RCA₀ = I
$$\Sigma_1^0$$
 + Δ_1^0 -CA. Δ_1^0 -CA
► WKL₀ = RCA₀ + Weak König's Lemma. $\frac{1}{2}(\Sigma_1^0$ -CA)
► ACA₀ = WKL₀ + Σ_0^1 -CA. Σ_1^0 -CA
► ATR₀ = ACA₀ + Arithmetical Transfinite Recursion. $\frac{1}{2}(\Sigma_1^1$ -CA)
► Π_1^1 -CA₀ = ATR₀ + Π_1^1 -CA. Σ_1^1 -CA

Subsystems of second-order arithmetic

may contain parameters

▶ For a class Γ of \mathcal{L}_{Π} -formulas, define

$$\Gamma\text{-CA} = \{ \exists X \ \forall v \ (v \in X \leftrightarrow \overset{\checkmark}{\theta}(v)) \ : \ \theta \in \Gamma \ \}.$$

$$ightharpoonup {\sf RCA_0} = {\sf I}\Sigma_1^0 + \Delta_1^0 - {\sf CA}.$$

$$\Delta_1^0$$
-CA

$$ightharpoonup WKL_0 = RCA_0 + Weak König's Lemma.$$

$$\frac{1}{2}(\Sigma_1^0$$
-CA)

$$ACA_0 = WKL_0 + \Sigma_0^1 - CA.$$

$$\Sigma_1^0$$
-CA $\frac{1}{2}(\Sigma_1^1$ -CA)

$$Arr ATR_0 = ACA_0 + Arithmetical Transfinite Recursion.$$

$$\Sigma_{-}^{1}$$
-CA

$$\blacksquare \Pi_1^1$$
-CA₀ = ATR₀ + Π_1^1 -CA.

$$\Sigma_1^1$$
-CA

Definition

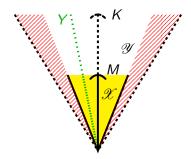
An end-extension $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ is *conservative* if

$$\mathscr{X} = \{ Y \cap M : Y \in \mathscr{Y} \}.$$

Definition

An end-extension $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ is *conservative* if

$$\mathcal{X}=\{Y\cap M:Y\in\mathcal{Y}\}.$$



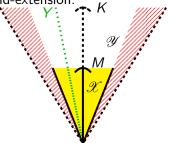
Definition

An end-extension $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ is *conservative* if

$$\mathscr{X} = \{ Y \cap M : Y \in \mathscr{Y} \}.$$

Theorem (Scott 1962, Tanaka 1997)

- (a) $(M, \mathcal{X}) \models WKL_0$.
- (b) (M, \mathcal{X}) has a proper conservative end-extension.



Definition

An end-extension $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ is *conservative* if

$$\mathscr{X} = \{ Y \cap M : Y \in \mathscr{Y} \}.$$

Theorem (Scott 1962, Tanaka 1997)

For a countable $(M, \mathcal{X}) \models \mathsf{RCA}_0$, the following are equivalent.

- (a) $(M, \mathcal{X}) \models WKL_0$.
- (b) (M, \mathcal{X}) has a proper conservative end-extension.

Theorem (Gaifman 1976, Phillips 1974)

- (a) $(M, \mathcal{X}) \models ACA_0$.
- (b) (M, \mathcal{X}) has a proper Σ_0^1 -elementary conservative end-extension.

Definition

An end-extension $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ is *conservative* if

$$\mathscr{X} = \{ Y \cap M : Y \in \mathscr{Y} \}.$$

Theorem (Scott 1962, Tanaka 1997)

For a countable $(M, \mathcal{X}) \models \mathsf{RCA}_0$, the following are equivalent.

- (a) $(M, \mathcal{X}) \models WKL_0$.
- (b) (M, \mathcal{X}) has a proper conservative end-extension.

Theorem (Gaifman 1976, Phillips 1974)

- (a) $(M, \mathcal{X}) \models \mathsf{ACA}_0$. Yokoyama 2007: Σ^1_1 -elementary
- (b) (M, \mathcal{X}) has a proper Σ_0^1 -elementary conservative end-extension.

Theorem (Yokoyama)

Let $n\geqslant 1$. Then every countable model of $RCA_0+\Sigma_n^1$ - $CA+\Sigma_n^1$ -AC has a proper Σ_{n+1}^1 -elementary conservative end-extension.

Theorem (Yokoyama)

Let $n \geqslant 1$. Then every countable model of RCA₀ + Σ_n^1 -CA + Σ_n^1 -AC has a proper Σ_{n+1}^1 -elementary conservative end-extension.

Proof

Ultrapower over an ultrafilter on the sets in the model.

Theorem (Yokoyama)

Let $n \geqslant 1$. Then every countable model of RCA₀ + Σ_n^1 -CA + Σ_n^1 -AC has a proper Σ_{n+1}^1 -elementary conservative end-extension.

Proof

Ultrapower over an ultrafilter on the sets in the model.

Corollary

Every countable model of Π_1^1 -CA₀ has a proper Σ_2^1 -elementary conservative end-extension.

Theorem (Yokoyama)

Let $n \geqslant 1$. Then every countable model of RCA₀ + Σ_n^1 -CA + Σ_n^1 -AC has a proper Σ_{n+1}^1 -elementary conservative end-extension.

Proof

Ultrapower over an ultrafilter on the sets in the model.

Corollary

Every countable model of Π_1^1 -CA₀ has a proper Σ_2^1 -elementary conservative end-extension.

Proof

$$\Pi^1_1\text{-}\mathsf{CA}_0 \vdash \mathsf{RCA}_0 + \Sigma^1_1\text{-}\mathsf{CA} + \Sigma^1_1\text{-}\mathsf{AC}.$$

Definition

For a class of $\mathcal{L}_{\rm II}$ -formulas Γ , define Γ -AC to be the set of all sentences of the form

$$\forall x \; \exists Y \; \theta(x,Y) \rightarrow \exists Y \; \forall x \; \theta(x,(Y)_x)$$

where $\theta \in \Gamma$. Here $(Y)_{x} = \{y : \langle x, y \rangle \in Y\}$.

Definition

For a class of $\mathcal{L}_{\rm II}$ -formulas Γ , define Γ -AC to be the set of all sentences of the form

$$\forall x \; \exists Y \; \theta(x,Y) \rightarrow \exists Y \; \forall x \; \theta(x,(Y)_x)$$

where $\theta \in \Gamma$. Here $(Y)_x = \{y : \langle x, y \rangle \in Y\}$.

Facts (various)

(a) Σ_n^1 is closed under number quantification under Σ_n^1 -AC.

Definition

For a class of $\mathcal{L}_{\rm II}$ -formulas Γ , define Γ -AC to be the set of all sentences of the form

$$\forall x \; \exists Y \; \theta(x,Y) \rightarrow \exists Y \; \forall x \; \theta(x,(Y)_x)$$

where $\theta \in \Gamma$. Here $(Y)_x = \{y : \langle x, y \rangle \in Y\}$.

Facts (various)

- (a) Σ_n^1 is closed under number quantification under Σ_n^1 -AC.
- (b) Π_1^0 -AC is equivalent to WKL₀ over RCA₀.

Definition

For a class of $\mathcal{L}_{\rm II}$ -formulas Γ , define Γ -AC to be the set of all sentences of the form

$$\forall x \; \exists Y \; \theta(x,Y) \rightarrow \exists Y \; \forall x \; \theta(x,(Y)_x)$$

where $\theta \in \Gamma$. Here $(Y)_x = \{y : \langle x, y \rangle \in Y\}$.

Facts (various)

- (a) Σ_n^1 is closed under number quantification under Σ_n^1 -AC.
- (b) Π_1^0 -AC is equivalent to WKL₀ over RCA₀.
- (c) Π_2^0 -AC is equivalent to Σ_1^1 -AC over ACA₀.

Definition

For a class of $\mathcal{L}_{\rm II}$ -formulas Γ , define Γ -AC to be the set of all sentences of the form

$$\forall x \; \exists Y \; \theta(x,Y) \rightarrow \exists Y \; \forall x \; \theta(x,(Y)_x)$$

where $\theta \in \Gamma$. Here $(Y)_x = \{y : \langle x, y \rangle \in Y\}$.

Facts (various)

- (a) Σ_n^1 is closed under number quantification under Σ_n^1 -AC.
- (b) Π_1^0 -AC is equivalent to WKL₀ over RCA₀.
- (c) Π_2^0 -AC is equivalent to Σ_1^1 -AC over ACA₀.
- (d) Σ_1^1 -AC is Π_2^1 -conservative over ACA₀.

Definition

For a class of $\mathcal{L}_{\rm II}$ -formulas Γ , define Γ -AC to be the set of all sentences of the form

$$\forall x \; \exists Y \; \theta(x,Y) \rightarrow \exists Y \; \forall x \; \theta(x,(Y)_x)$$

where $\theta \in \Gamma$. Here $(Y)_x = \{y : \langle x, y \rangle \in Y\}$.

Facts (various)

- (a) Σ_n^1 is closed under number quantification under Σ_n^1 -AC.
- (b) Π_1^0 -AC is equivalent to WKL₀ over RCA₀.
- (c) Π_2^0 -AC is equivalent to Σ_1^1 -AC over ACA₀.
- (d) Σ_1^1 -AC is Π_2^1 -conservative over ACA₀.
- (e) $RCA_0 + \Sigma_n^1 AC \vdash \Delta_n^1 CA$.

Definition

For a class of $\mathcal{L}_{\rm II}$ -formulas Γ , define Γ -AC to be the set of all sentences of the form

$$\forall x \; \exists Y \; \theta(x,Y) \rightarrow \exists Y \; \forall x \; \theta(x,(Y)_x)$$

where $\theta \in \Gamma$. Here $(Y)_x = \{y : \langle x, y \rangle \in Y\}$.

Facts (various)

- (a) Σ_n^1 is closed under number quantification under Σ_n^1 -AC.
- (b) Π_1^0 -AC is equivalent to WKL₀ over RCA₀.
- (c) Π_2^0 -AC is equivalent to Σ_1^1 -AC over ACA₀.
- (d) Σ_1^1 -AC is Π_2^1 -conservative over ACA₀.
- (e) $RCA_0 + \Sigma_n^1 AC \vdash \Delta_n^1 CA$.
- (f) $\mathsf{RCA}_0 + \bigcup_{m \in \mathbb{N}} \Sigma^1_m$ - $\mathsf{CA} \nvdash \Sigma^1_3$ - AC .

Theorem (Kaye–W, Simpson)

For a countable $(M, \mathcal{X}) \models \mathsf{RCA}_0$, the following are equivalent.

- (a) $(M, \mathscr{X}) \models \Pi_1^1\text{-}\mathsf{CA}_0$.
- (b) (M, \mathcal{X}) has an end-extension (K, \mathcal{Y}) containing some cofinal $G \in \mathcal{Y}$ such that for all arithmetical formulas $\zeta(i, X)$,

$$\exists H \in \mathsf{Filt}_{\mathscr{X}}(G) \ \forall i \in M \ \big((K,\mathscr{Y}) \models \zeta(i,G) \Leftrightarrow H_{>i} \Vdash \zeta(i,X)\big).$$

Notation

▶ If $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ and $G \in \mathscr{Y}$, then

$$\mathsf{Filt}_{\mathscr{X}}(G) = \{ S \in \mathscr{X} : G \subseteq S^K \}.$$

- ▶ $H \Vdash \xi(X)$ means $(M, \mathcal{X}) \models \forall X \subseteq_{\mathsf{cf}} H \ \xi(X)$.
- ► $H_{>i} = \{x \in H : x > i\}.$

Theorem (Kaye-W, Simpson)

For a countable $(M, \mathcal{X}) \models \mathsf{RCA}_0$, the following are equivalent.

- (a) $(M, \mathcal{X}) \models \Pi_1^1\text{-}\mathsf{CA}_0$.
- (b) (M, \mathcal{X}) has an end-extension (K, \mathcal{Y}) containing some cofinal $G \in \mathcal{Y}$ such that for all arithmetical formulas $\zeta(i, X)$,

$$\exists H \in \mathsf{Filt}_{\mathscr{X}}(G) \ \forall i \in M \ \big((K, \mathscr{Y}) \models \zeta(i, G) \Leftrightarrow H_{>i} \Vdash \zeta(i, X) \big).$$

Notation

▶ If $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ and $G \in \mathscr{Y}$, then

$$\mathsf{Filt}_{\mathscr{X}}(G) = \{ S \in \mathscr{X} : G \subseteq S^K \}.$$

- ▶ $H \Vdash \xi(X)$ means $(M, \mathcal{X}) \models \forall X \subseteq_{\mathsf{cf}} H \ \xi(X)$.
- ▶ $H_{>i} = \{x \in H : x > i\}.$

Theorem (Kaye-W, Simpson)

For a countable $(M, \mathcal{X}) \models \mathsf{RCA}_0$, the following are equivalent.

- (a) $(M, \mathcal{X}) \models \Pi_1^1\text{-CA}_0$. $\Sigma_1^1\text{-elementary}$
- (b) (M, \mathcal{X}) has an end-extension (K, \mathcal{Y}) containing some cofinal $G \in \mathcal{Y}$ such that for all arithmetical formulas $\zeta(i, X)$,

$$\exists H \in \mathsf{Filt}_{\mathscr{X}}(G) \ \forall i \in M \ \big((K,\mathscr{Y}) \models \zeta(i,G) \Leftrightarrow H_{>i} \Vdash \zeta(i,X)\big).$$

Notation

▶ If $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ and $G \in \mathscr{Y}$, then

$$\mathsf{Filt}_{\mathscr{X}}(G) = \{ S \in \mathscr{X} : G \subseteq S^K \}.$$

- ▶ $H \Vdash \xi(X)$ means $(M, \mathcal{X}) \models \forall X \subseteq_{\mathsf{cf}} H \ \xi(X)$.
- ▶ $H_{>i} = \{x \in H : x > i\}.$

Theorem (Kaye-W, Simpson)

For a countable $(M, \mathcal{X}) \models \mathsf{RCA}_0$, the following are equivalent.

- (a) $(M, \mathcal{X}) \models \Pi_1^1\text{-CA}_0$. $\Sigma_1^1\text{-elementary}$
- (b) (M, \mathcal{X}) has an end-extension (K, \mathcal{Y}) containing some cofinal $G \in \mathcal{Y}$ such that for all Σ_2^0 -formulas $\xi(X)$,

$$(K, \mathscr{Y}) \models \xi(G) \Leftrightarrow \exists H \in \mathsf{Filt}_{\mathscr{X}}(G) \ H \Vdash \xi(X).$$

Notation

▶ If $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ and $G \in \mathscr{Y}$, then

$$\mathsf{Filt}_{\mathscr{X}}(G) = \{ S \in \mathscr{X} : G \subseteq S^K \}.$$

- ▶ $H \Vdash \xi(X)$ means $(M, \mathcal{X}) \models \forall X \subseteq_{\mathsf{cf}} H \ \xi(X)$.
- ▶ $H_{>i} = \{x \in H : x > i\}.$

How about ATR₀?

Theorem (Kaye–W)

For a countable $(M, \mathcal{X}) \models \mathsf{RCA}_0$, the following are equivalent.

- (a) $(M, \mathcal{X}) \models \mathsf{ATR}_0$.
- (b) (M, \mathscr{X}) has an extension (K, \mathscr{Y}) containing some cofinal $G \in \mathscr{Y}$ such that for all Σ^0_1 and Π^0_1 -formulas $\xi(X)$,

$$(K, \mathscr{Y}) \models \xi(G) \Leftrightarrow \exists H \in \mathsf{Filt}_{\mathscr{X}}(G) \ H \Vdash \xi(X).$$

Notation

▶ If $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ and $G \in \mathscr{Y}$, then

$$\mathsf{Filt}_{\mathscr{X}}(G) = \{ S \in \mathscr{X} : G \subseteq S^K \}.$$

- ▶ $H \Vdash \xi(X)$ means $(M, \mathcal{X}) \models \forall X \subseteq_{\mathsf{cf}} H \ \xi(X)$.
- ▶ $H_{>i} = \{x \in H : x > i\}.$

How about ATR₀?

Theorem (Kaye–W)

For a countable $(M, \mathcal{X}) \models RCA_0$, the following are equivalent.

- (a) $(M, \mathcal{X}) \models \mathsf{ATR}_0$. Σ_0^1 -elementary
- (b) (M, \mathscr{X}) has an extension (K, \mathscr{Y}) containing some cofinal $G \in \mathscr{Y}$ such that for all Σ^0_1 and Π^0_1 -formulas $\xi(X)$,

$$(K,\mathscr{Y}) \models \xi(G) \Leftrightarrow \exists H \in \mathsf{Filt}_{\mathscr{X}}(G) \ H \Vdash \xi(X).$$

Notation

▶ If $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ and $G \in \mathscr{Y}$, then

$$\mathsf{Filt}_{\mathscr{X}}(G) = \{ S \in \mathscr{X} : G \subseteq S^K \}.$$

- ▶ $H \Vdash \xi(X)$ means $(M, \mathcal{X}) \models \forall X \subseteq_{\mathsf{cf}} H \ \xi(X)$.
- ▶ $H_{>i} = \{x \in H : x > i\}.$

How about ATR₀?

Theorem (Kaye–W)

For a countable $(M, \mathcal{X}) \models \mathsf{RCA}_0$, the following are equivalent.

- (a) $(M, \mathcal{X}) \models \mathsf{ATR}_0$. Σ_0^1 -elementary
- (b) (M, \mathscr{X}) has an extension (K, \mathscr{Y}) containing some cofinal $G \in \mathscr{Y}$ such that for all Σ_1^0 and Π_1^0 -formulas $\xi(X)$,

$$(K, \mathscr{Y}) \models \xi(G) \Leftrightarrow \exists H \in \mathsf{Filt}_{\mathscr{X}}(G) \ H \Vdash \xi(X).$$

Theorem (Kaye-W)

- (a) $(M, \mathcal{X}) \models \mathsf{ATR}_0 + \Sigma_1^0 \mathsf{-RT}$.
- (b) (M, \mathcal{X}) has an end-extension (K, \mathcal{Y}) containing some cofinal $G \in \mathcal{Y}$ such that for all Σ_1^0 -formulas $\xi(X)$,

$$(K, \mathscr{Y}) \models \xi(G) \Leftrightarrow \exists H \in \mathsf{Filt}_{\mathscr{X}}(G) \ H \Vdash \xi(X).$$

Combinatorial basis

Theorem (Friedman-McAloon-Simpson 1982)

 ATR_0 is equivalent over RCA_0 to

$$\forall^{\mathsf{cf}} S \ \exists H \subseteq_{\mathsf{cf}} S \ \big(\forall X \subseteq_{\mathsf{cf}} H \ \xi(X) \lor \forall X \subseteq_{\mathsf{cf}} H \ \neg \xi(X) \big),$$

where ξ ranges over Σ_1^0 .

Combinatorial basis

Theorem (Friedman-McAloon-Simpson 1982)

ATR₀ is equivalent over RCA₀ to

$$\forall^{cf} S \exists H \subseteq_{cf} S \ (\forall X \subseteq_{cf} H \ \xi(X) \lor \forall X \subseteq_{cf} H \ \neg \xi(X)),$$

where ξ ranges over Σ_1^0 .

Theorem (Simpson)

 Π_1^1 -CA₀ is equivalent over RCA₀ to

$$\forall^{\mathsf{cf}} S \ \exists H \subseteq_{\mathsf{cf}} S \ \forall i$$
$$(\forall X \subseteq_{\mathsf{cf}} H_{>i} \ \zeta(i, X) \ \lor \ \forall X \subseteq_{\mathsf{cf}} H_{>i} \ \neg \zeta(i, X)),$$

where ζ ranges over arithmetical formulas.

Concluding questions

(1) To what extent are the following pairs similar?

$$\begin{array}{lll} \mathsf{B}\Sigma_{n+1} & \sim & \Sigma_n^1\text{-}\mathsf{C}\mathsf{A} + \Sigma_n^1\text{-}\mathsf{A}\mathsf{C} \\ \mathsf{B}\Sigma_1 & \sim & \mathsf{ATR}_0 \\ \mathsf{B}\Sigma_1 + \mathsf{exp} & \sim & \mathsf{ATR}_0 + \Sigma_1^0\text{-}\mathsf{R}\mathsf{T} \end{array}$$

Concluding questions

(1) To what extent are the following pairs similar?

$$\begin{array}{lll} \mathsf{B}\Sigma_{n+1} & \sim & \Sigma_n^1\text{-}\mathsf{C}\mathsf{A} + \Sigma_n^1\text{-}\mathsf{A}\mathsf{C} \\ \mathsf{B}\Sigma_1 & \sim & \mathsf{A}\mathsf{T}\mathsf{R}_0 \\ \mathsf{B}\Sigma_1 + \mathsf{exp} & \sim & \mathsf{A}\mathsf{T}\mathsf{R}_0 + \Sigma_1^0\text{-}\mathsf{R}\mathsf{T} \end{array}$$

(2) Are the similarities merely superficial?

Concluding questions

(1) To what extent are the following pairs similar?

$$\begin{array}{lll} \mathsf{B}\Sigma_{n+1} & \sim & \Sigma_n^1\text{-}\mathsf{C}\mathsf{A} + \Sigma_n^1\text{-}\mathsf{A}\mathsf{C} \\ \mathsf{B}\Sigma_1 & \sim & \mathsf{A}\mathsf{T}\mathsf{R}_0 \\ \mathsf{B}\Sigma_1 + \mathsf{exp} & \sim & \mathsf{A}\mathsf{T}\mathsf{R}_0 + \Sigma_1^0\text{-}\mathsf{R}\mathsf{T} \end{array}$$

- (2) Are the similarities merely superficial?
- (3) What is the role played by definable types in second-order arithmetic?

An excursion for me

Theorem

For a countable $M \models I\Delta_0$, the following are equivalent.

- (a) $M \models \mathsf{B}\Sigma_1$.
- (b) M has a Σ_2 -elementary cofinal extension K containing some g such that
 - (i) for all Σ_1 and Π_1 -formulas $\xi(x)$,

$$K \models \xi(g) \Leftrightarrow \exists A \in \mathsf{Filt}_M(g) \ A \Vdash \xi(x),$$

(ii)

Notation

- ▶ $\mathsf{Def}_{\Pi_1}^*(M) = \{A \in \mathsf{Def}_{\Pi_1}(M) : A \text{ is bounded and infinite}\}.$
- ▶ If $g \in K \supseteq M$, then $\operatorname{Filt}_M(g) = \{A \in \operatorname{Def}_{\Pi_1}^*(M) : g \in A^K\}$.
- ▶ $A \Vdash \xi(x)$ means $M \models \forall x \in A \ \xi(x)$.

An excursion for me

Theorem

For a countable $M \models I\Delta_0$, the following are equivalent.

- (a) $M \models \mathsf{B}\Sigma_1$.
- (b) M has a Σ_2 -elementary cofinal extension K containing some g such that
 - (i) for all Σ_1 and Π_1 -formulas $\xi(x)$,

$$K \models \xi(g) \Leftrightarrow \exists A \in \mathsf{Filt}_M(g) \ A \Vdash \xi(x),$$

(ii) for all $A \in \text{Filt}_M(g)$ and $\theta \in \Delta_0$, there is $b \in M$ such that

$$A \Vdash \exists v \ \theta(x, v) \Rightarrow A \Vdash \exists v < b \ \theta(x, v).$$

Notation

- ▶ $\mathsf{Def}_{\Pi_1}^*(M) = \{A \in \mathsf{Def}_{\Pi_1}(M) : A \text{ is bounded and infinite}\}.$
- ▶ If $g \in K \supseteq M$, then $\operatorname{Filt}_M(g) = \{A \in \operatorname{Def}_{\Pi_1}^*(M) : g \in A^K\}$.
- ▶ $A \Vdash \xi(x)$ means $M \models \forall x \in A \ \xi(x)$.

Comparison with ATR₀

Theorem (Kaye–W)

For a countable $(M, \mathcal{X}) \models \mathsf{RCA}_0$, the following are equivalent.

- (a) $(M, \mathcal{X}) \models \mathsf{ATR}_0$.
- (b) (M, \mathscr{X}) has (K, \mathscr{Y}) containing some cofinal $G \in \mathscr{Y}$ such that for all Σ_1^0 and Π_1^0 -formulas $\xi(X)$,

$$(K, \mathscr{Y}) \models \xi(G) \Leftrightarrow \exists H \in \mathsf{Filt}_{\mathscr{X}}(G) \ H \Vdash \xi(X)$$

Notation

▶ If $(K, \mathscr{Y}) \supseteq (M, \mathscr{X})$ and $G \in \mathscr{Y}$, then

$$\mathsf{Filt}_{\mathscr{X}}(G) = \{ S \in \mathscr{X} : G \subseteq S^K \}.$$

▶ $H \Vdash \xi(X)$ means $(M, \mathscr{X}) \models \forall X \subseteq_{\mathsf{cf}} H \ \xi(X)$.