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First-order arithmetic

> % — {07 17+a X7 <a :}
» Quantifiers of the forms Vx<t and Ix<t are bounded.
» Z-formulas in which all quantifiers are bounded are Ay.

> Y ,-formulas are %-formulas of the form (neN)
3)_(1 V)_Q e Q)_(n QO()_(,Z),

where ¢ € Ag and Q € {V, 3}.
» [1,-formulas are negations of ¥ ,-formulas. (neN)

» II" consists of PA™ and
0(0) AVx (B(x) = O(x + 1)) — ¥x 6(x)

forall § eT. (I is a set of Zj-formulas.)
» PA =Upen X0
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where ¢ € Ag and Q € {V, 3}.
» [1,-formulas are negations of ¥ ,-formulas. (neN)

» II" consists of PA™ and
0(0) AVx (B(x) = O(x + 1)) — ¥x 6(x)

forall 8 €T.

» PA = UneN 1x,. may contain
parameters

(I is a set of Z-formulas.)




End-extensions and collection ~K

Definition :
An end-extension of M = PA™ is K O M such that : M
VxeM Vye K\M x<y.
X
Definition

For each n € N, we have BX,, axiomatized by 1Ag and
Va (Vx<a Jy O(x,y) — 3b Vx<a Jy<b 0(x,y)),

where 0 ranges over ¥ ,,.

Proposition (Parsons 1970, Paris—Kirby 1978)
I 41 F BEpsq F 15, for all n € .
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Model theory of collection

Theorem (Paris—Kirby 1978)

For a countable M |=1Aq and n > 2, the following are equivalent.
(a) M EBL,.

(b) M has a proper X ,-elementary end-extension.

Theorem (Paris—Kirby 1978)

If M = 1Aq that has a proper ¥j-elementary end-extension, then
M = BXL,.

Open question (Wilkie—Paris 1989)

Does every countable model of BX; have a proper end-extension
K E1Aq?

Theorem (folkore?)

If M is a countable model of BX; + exp, then M has a proper
end-extension K = |Ay.
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Model theory of induction

Theorem (Mac Dowell-Specker 1961, Paris—Kirby 1978)
For M [= 1A, the following are equivalent.
(a) M = PA.

(b) M has a proper (conservative) elementary end-extension.

Theorem (Yokoyama, folklore?)

For a countable M |=1Ag + exp and n € N, the following are

equivalent.

(a) M = I1X,41.

(b) M has proper X ,-elementary end-extension K |= IX, in which
M is semiregular.

Proof
Self-embed M. ]
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Second-order arithmetic

v

21 ={0,1,4+,x,<,=,€}.

The number sort has variables x,y, z, ...

The set sort has variables X, Y, Z, ...

Equality of sets is defined by the Axiom of Extensionality

v

v

v

VX, Y (Vx (xeX & xeY) = X =Y).

So Zy-structures are of the form (M, 2"), where 2" C P(M).
M
Z

v
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End-extensions of models of second-order arithmetic

Definition
» An end-extension of (M, 2°) = PA” is (K, %) 2 (M, Z) in
which K is an end-extension of M.
» An end-extension (K, %) D (M, Z") is proper if K # M.

Technical problem

In second-order arithmetic: 2" C P(M) and # C P(K).
In model theory: MC Kand 2 C%. XK e K

The two conventions do not mix well. K : !

Solution

Make explicit an embedding 2" — &
X — XK.
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The formula hierarchy in second-order arithmetic

» Z-formulas in which all quantifiers are bounded number
quantifiers are Ag.

» Y0 formulas are Z-formulas of the form Let ne N
_ and i < 2.
1 V2 - QX (X, Y, ),

where p € AJ and Q € {V,3}.

» Formulas in | Y0 are called arithmetical.

meN
» Y1 formulas are Zj-formulas of the form

33X VX - QX (X, 7, 2), same as ¥}

where ¢ is arithmetical and Q € {V, 3}.
» [/ -formulas are negations of ¥/ -formulas.

» X! -formulas equivalent to I/ -formulas are called Al.
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» |[" and Bl are defined as in the first-order context for a class
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Proposition (essentially Paris—Kirby 1978)
For countable (M, 2°) = IAJ and n > 2, the following are
equivalent.

(a) (M, 2) = BEY,
(b) (M, Z) has a proper ¥0-elementary end-extension.
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Induction in second-order arithmetic

Theorem (essentially Mac Dowell-Specker 1961,
Paris—Kirby 1978)

For a countable (M, 27) = IAJ, the following are equivalent.
(a) (M, Z") = PA™.

(b) (M, Z) has a proper ¥}-elementary end-extension.

Theorem (Yokoyama, folklore?)
For a countable (M, 2°) = 1AJ + exp and n € N, the following are
equivalent.
(@) (M, 2) =120,
(b) (M, Z) has proper ¥-elementary end-extension
(K,%) =122 in which M is semiregular.
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Subsystems of second-order arithmetic

v

v

v

v

v

v

[ may contain parameters j

For a class ' of .Z-formulas, define

FCA={3XVv (veX«0(v) : 0T }.

RCAq = IZ9 + AI-CA.

WKLy = RCAp + Weak Konig's Lemma.

ACAg = WKLg + Z}-CA.

ATRg = ACAq + Arithmetical Transfinite Recursion.
Mi-CAg = ATRg + Ni-CA.

A9-CA
L(59-cA)
¥9-CA
(¥3-CA)
¥1-CA

N
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Conservative extensions

Definition
An end-extension (K, %) 2 (M, Z") is conservative if

2 ={YnM:Yec&}.

Theorem (Scott 1962, Tanaka 1997)
For a countable (M, 27) = RCAg, the following are equivalent.
(a) (M, 2) = WKLo,

(b) (M, Z") has a proper conservative end-extension.

Theorem (Gaifman 1976, Phillips 1974)
For a countable (M, 2") = RCAy, the following are equivalent.
(a) (M, Z") &= ACA,. /[ Yokoyama 2007: ¥ 1-elementary j

(b) (M, Z) has a proper ¥}-elementary conservative
end-extension.
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More elementarity

Theorem (Yokoyama)

Let n > 1. Then every countable model of RCAg + X1-CA + X 1-AC
has a proper 2}7+1—e|ementary conservative end-extension.

Proof

Ultrapower over an ultrafilter on the sets in the model. []

Corollary

Every countable model of M}-CAq has a proper ¥3-elementary
conservative end-extension.

Proof
ML-CAg - RCAg + X1-CA + TLAC, 0
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For a class of .Z-formulas I, define '-AC to be the set of all
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Vx Y 0(x,Y) = 3Y Vx 0(x, (Y)x)
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The Axiom of Choice in second-order arithmetic

Definition
For a class of .Z-formulas I, define '-AC to be the set of all
sentences of the form

Vx Y 0(x,Y) = 3Y Vx 0(x, (Y)x)

where 6 € T'. Here (Y), ={y: (x,y) € Y}.

Facts (various)
(a) X1 is closed under number quantification under X :-AC.
(b) M9-AC is equivalent to WKLq over RCA,.
(c) NY-AC is equivalent to Z1-AC over ACA,.
(d) 1-AC is M3-conservative over ACA. '
e) RCAg + X1-ACF AL-CA.

)

(
(F) RCAg + Uppen TL-CA ¥ T1-AC.
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(a) (M, 2) = Nj-CAo.
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G € % such that for all arithmetical formulas (i, X),

IH € Filty(G) Vie M ((K, %) ((i,G) < Hsilk ((i, X)).

Notation
» If (K,%2) 2> (M, %) and G € ¢, then

Filt,(G)={Se 2 : G C SK}.

» HIF&(X) means (M, Z27) EVX Cr H &(X).
» Hoj={xe H:x>i}.
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For a countable (M, 2") = RCAg, the following are equivalent.
(a) (M, 2) = Ni-CA,. /[ ¥ 1-elementary ]

(b) (M, Z") has an end-extension (K, %) containing some cofinal
G € % such that for all ¥3-formulas £(X),

(K, %)= &(G) < 3HE€Filty(G) HIFE(X).
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How about ATRg?

Theorem (Kaye-W)
For a countable (M, 2") = RCAg, the following are equivalent.
(a) (M, Z") = ATRo. /[ ¥ -elementary J

(b) (M, Z") has an extension (K, %) containing some cofinal
G € % such that for all ¥9- and M9-formulas £(X),

(K, %) E&G) <« 3HeFilty(G) HIFEX).

Theorem (Kaye-W)

For a countable (M, 27) = RCAy, the following are equivalent.

(a) (M, Z) = ATRy + 2J-RT.

(b) (M, Z") has an end-extension (K, %) containing some cofinal
G € % such that for all ¥9-formulas £(X),

(K, %)= £(G) <« 3HEFilty (G) HIF&(X).



Combinatorial basis

Theorem (Friedman—McAloon-Simpson 1982)
ATRg is equivalent over RCAj to
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Combinatorial basis

Theorem (Friedman—McAloon-Simpson 1982)
ATRg is equivalent over RCAq to

VIS JHC S (VX Cor H E(X) VX C H —€(X)),
where £ ranges over Z(l).

Theorem (Simpson)
I'I%—CAO is equivalent over RCAq to

vefS IHC4 S Vi
(VX Cef H>i C_:(I,X) vV VX Cef H>i _'C(va))a

where ¢ ranges over arithmetical formulas.
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Concluding questions

(1) To what extent are the following pairs similar?
BX, 1 ~ YLCA+XL-AC
BY, ~ ATRg
BY;+exp ~ ATRg+ X9-RT
(2) Are the similarities merely superficial?

(3) What is the role played by definable types in second-order
arithmetic?



An excursion for me

Theorem
For a countable M = 1A, the following are equivalent.

(a) M = BX;.
(b) M has a Xp-elementary cofinal extension K containing some g
such that
(i) for all X31- and My-formulas &(x),

KE¢g) < FAcFiltu(g) AlFE(x),

(i)

Notation
» Deffy (M) = {A € Defp, (M) : A'is bounded and infinite}.
> If g € K 2 M, then Filty(g) = {A € Defy (M) : g € AK}.
» AlFE&(x) means M =Vx € A (x).



An excursion for me
Theorem
For a countable M = 1A, the following are equivalent.

(a) M = BX;.
(b) M has a Xp-elementary cofinal extension K containing some g
such that
(i) for all X31- and My-formulas &(x),

KE¢g) < FAcFiltu(g) AlFE(x),
(i) for all A € Filtpm(g) and 6 € Ay, there is b € M such that
AlF3v O(x,v) = AlF3v<bhb O(x,v).

Notation
» Deffy (M) = {A € Defp, (M) : A'is bounded and infinite}.

> If g € K 2 M, then Filty(g) = {A € Defy (M) : g € AK}.
» AlFE&(x) means M =Vx € A (x).



Comparison with ATR,

Theorem (Kaye-W)
For a countable (M, Z") = RCAy, the following are equivalent.
(a) (M, Z) E ATR,.

(b) (M, Z) has (K, %) containing some cofinal G € % such that
for all £9- and N9-formulas £(X),

(K. %)= ¢(G) & 3HEFilty(G) HIFE(X)

Notation
» If (K,%) 2> (M, %) and G € %, then

Filty(G)={Se€ 2 : G C S¥}.

» HIFE(X) means (M, 27) =EVX Ce¢ H £(X).
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